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CHAPTER 1 

INTRODUCTION 

The printed circuit transmission line has become an integral part 

of many high frequency circuit applications, creating an ever 

increasing demand for accurate theoretical predictions of ci rcuit 

performance . While approximate formulations were acceptable in the 

past, rising performance expectations as well as the desire for 

circuits that don't require post-production tuning have made the use of 

more exact formulations necessary. This report uses exac t formulations 

to address four major areas of concern in high frequency printed 

circuit design; complex microstrip structures {multiple lines and/or 

dielectric layers), coupling between lines, distortion of non-periodic 

signals on complex structures, and a new method to control coupling on 

multilayer structures, as well as presenting numerical results for each 

of these areas. This chapter discusses the uses of microstrips , 

discusses the various types of approaches used to solve t he above 

mentioned problems, and outlines the solution methods and numerical 

results presented in this report. 

1 . 1 History and Applications of Microstrips 

While the use of printed circuit transmi ssion lines is a 

relatively recent development, today its technology is considered to be 

mature. The first p rinted circuit transmission line, the strip line, 



was developed in World War II while the microstrip wa s first proposed 

and investigated in the early fifties . Yet, by 1955, the IRE 

Transactions on Microwave Theory and Techniques [1) devoted an entire 

issue to the research and design of this new form of microwave 

circuitry. Early research in this field was concerned with calculating 

the low frequency parameters of the microstrip using a quasi-static TEM 

approach. Demands for higher operating frequencies, shorter pulse 

widths, and smaller circuit dimensions required that researchers 

address the frequency dependent nature of the microstrip parameters. 

Today, the research field is concerned with obtaining more rigorous 

solutions of complex microstrip structures that inc lude: 

1. Multiple dielectric layers . 

2 . Multiple conductors on different layers . 

3. Anisotropic dielectrics. 

4. Operating frequencies that approach the optical range. 

5. Discontinuities in the line . 

6. Losses in the conductors and the dielectrics. 

7. Losses due to radiation. 

The design of microwave integrated circuits has become very advanced, 

so that there are several commercial computer aided design packages on 

the market [2) . Thus microstrip circuit design has become sufficiently 

advanced to be considered a mature technology . 

In spite of the microwave integrated circuit's (MIC's) low power 

handling capabilities, it enjoys increasing popularity due to its many 

advantages over waveguide and coaxial lines. MIC ' s are relatively 

inexpensive to make and the fabrication process is simple. Because of 
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its planar structure, modern surface mounted components, such as GaAs 

FET's, are easily included in the circuit structure, giving the MIC 

circuit a low profile and reduced weight. MIC's are very versatile so 

that most of the common passive devices, such as inductors, capacitors, 

and resistors, can be realized using microstrips, eliminating the need 

to add these passive devices as discrete components. In addition, 

MIC's can be used to make phase shifters, mixers, amplifiers, filters, 

power dividers, power combiners, and directional couplers. As an 

antenna, the MIC is often used on the exterior skin of aircraft and 

missiles because its low profile does not affect the aerodynamics of 

the vehicle. 

MIC's are currently being used in a wide range of high frequency 

applications that affect all fields of electrical engineering. MIC 

components have been designed to operate in the UHF, microwave, and 

millimeter wave regions, and its use is being extended into the low 

optical frequencies. Current practical applications include high speed 

digital transmission and optoelectronic switches. Microstrips have 

even been applied to pulse shaping for a laser used to start a fusion 

reaction [3] . 

1.2 The Effective Dielectric Constant of a Single Microstrip 

One of the most common figures of merit used when describing a 

microstrip line is the frequency dependent effective dielectric 

constant, creff(f). The frequency dependence of creff is due to the 

discontinuity of the dielectric at the conductor interface, prohibiting 

the propagation of a pure TEM mode . This frequency dependence is 
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responsible for the microstrip's dispersive behavior at higher 

frequencies, which, in general, is an undesirable property. Altho ugh 

the early efforts in research emphasized the use of a TEM mode or 

quasi-static approximation, later work in the field approaches the 

problem from an exact modal or so called full wave solut ion. 

The first attempts at solving for creff were approximations that 

attempted to model the microstrip as a variation of a simpler 

electromagnetic problem. Conformal mapping of the microstrip structure 

was used [4), which transforms the geometry of the microstrip into a 

simpler coordinate system and then solves the quasi-static boundary 

value problem. The microstrip was also modeled as a ridged waveguide 

and the solution obtained in terms of longitudinal side electric (LSE) 

modes [5]. More recently a coupled mode approach has been used, where 

a TEM is coupled to either at TM mode [6 ), [7] or aTE mode [8]-[10] 
0 0 

to solve the boundary conditions. 

As computers became more inexpensive and prevalent, methods were 

introduced that solved, numerically, the microstrip boundary value 

problem in spatial variables . These methods, known as spatial domain 

techniques, achieve answers in the form of a set of simultaneous linear 

equations that must be solved with a matrix inversion. The 

formulations are exact in the limit as the number of equations are 

increased, but large amounts of computer time are required to achieve 

high accuracy. One spatial d omain approach is to formulate a singular 

integral equation for the microstrip [11], [12] which results in the 

system of linear equations. Another approach i s to use the finite 

difference method [13), [14] which uses Maxwell' s e quations in it s 



first order differential form to specify the fi elds at a se t of 

discrete points. The first order derivatives are calculated using a 

difference approximation to create the set of l inear equations. 

Dekelva [15) used a moment method approach, enforc ing the boundary 

conditions at a discrete number of points to achieve r esults for c f 
ref 

Mode matching [16), [17) splits the microstrip into different regions 

where the boundary conditions are uniform. The fields in each region 

are expanded into an infinite set of modes that satis fy the boundary 

conditions of the particular region. Then the continuity of the fields 

between regions i s enforced by equating the modal sets at the 

boundaries of each region . 

In an effort to reduce the amount of computer time used by the 

spatial domain techniques while retaining the a ccuracy of an exact 

formulation , the Spectral Domain Approach (SDA) wa s introduced [18) . 

The SDA begins the solution of the boundary value problem by Fou r ier 

transforming the spatial domain fields into the spectral domain. This 

transformation greatly simplifies the formulation of the boundary value 

problem and allows a ccurate resul ts with minimal computer time. Ear l y 

. z d z work with the SDA approached the problem assum1ng TE an TM moda l 

configurations for the fields [1 9)-[21). While t h is approach yields 

the correct answers, as guaranteed by the uniqueness theorem, its 

derivation is lengthy and complex . To simplify this derivation, TEY 

(LSE) and TMY (LSM) modal configurations were also used, [22), [23) , 

since the microstrip structure closely resembles the partially filled 

dielectric waveguide. Using this modal c onfiguratio n, the deri vation 

i s simplified and there is less chance for error . The SDA ha s become 
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perhaps the most popular technique for solving microstrip problems and 

in 1985, IEEE Transactions on Microwave Theory and Techniques published 

an invited paper [ 24 ] which contains a relatively complete histo ry and 

description of the SDA as well as an extensive bibliography. 

1.3 Coupled Microstrips 

While research o f single isolated microstrips is important, the 

effects of neighboring conductors must also be considered in practical 

circuit design. The simplest structure that can be used to study these 

effects is the symmetric coupled microstrip, where the presence of the 

second conductor adds another degree of complexity to the solution of 

the boundary value problem. However, it is possible to split this 

problem into two simpler ones that can easily be solved by utilizing 

the concept of even and odd modes, proposed by Wheeler in 1956 [25] . 

This method is described in detail in Chapter 2 . When the structure i s 

not symmetric , the problem can be split into a similar pair of modes , 

usually referred to as c and n modes [26]. 

As with the single microstrip, early researc h centered on 

obtaining easily computed approximate equations to describe the 

frequency dependence of creff" Many of the approaches used for single 

microstrips have also been used for the computation of coupl ed 

microstrips, such as conformal mapping [ 27 ], an LSE capacitance model 

[28], and a parallel plate waveguide model [ 29 ]. In addition, some 

curve fitted formulas have also been prese nted, using both experimental 

data [30) and result s computed with the spectral domain approach [31] . 

Although these approximate formulas are u seful, their application is 
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limited to a few specific cases. To be able to consider more general 

structures with high accuracy, full wave methods are used, as in the 

case of the single microstrip. 

Like the approximate modelings, exact formulations for coupled 

microstrips closely parallel the derivations for single microstrips. 

Al so like the single microstrip formulations, the boundary value 

problem can be solved in either the spatial or spectral domain. 

Solutions f or the spatial domain are given by Krage and Haddad [32) by 

expanding the fields into an infinite set of modes i n each medium and 

enforcing, numerically, the vanishing of the electric field on the 

center conductors. The spectral domain, however, is the easiest of all 

methods to extend the solution from a single conductor to multiple 

conductors because it uses a Green's function approach. This approach 

formulates the boundary value problem assuming only a point source at 

first. The solution for the actual structure is obtained by using 

superposition of the point sources to represent the actua l current 

densities. Thus the Green's function derived for the single microstrip 

can be used without modification for the coupled microstrip problem. 

The spectral domain has been applied to single [33) and multiple 

substrate [34) coupled microstrip structures. 

1 . 4 Pulse Dispersion 

For single frequency (CW) operation on a microstrip, it is 

sufficient to know only a single value of creff' which can then be used 

to compute most of the other parameters of interest. However, if 

either non-periodic or wide band signals are to be used on the 
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microstrip, then it is important to study the effe c ts of the frequency 

dependence of creff on the signal . Since the mi crostrip, as a 

transmission line, is dispersive (the phase veloci t y is a functi o n o f 

frequency), its response must be analyzed in the frequenc y domain, 

whereas a component whose response in time is n on-l i nea r , s uch as 

transistors or diodes, must be analyzed in the time doma i n. The re are 

three different methods for determining the time domain response of a 

dispersive transmission line; 

1) Represent the transmission line as a set of matrix parameters, 

such as ABCD or S parameters. 

2) Compute the inverse Fourier transform of the product of the 

frequency domain transfer function of the line and the Fourie r 

transform of the signal. 

3) Model the structure using the time domain f i nite differe n c e 

method. 

The transmission line parameter approach has been u s ed in 

conjunction with the mi c rostrip [35], [36], where the mat rix parameter s 

were determined using approximate formulas. Al thoug h this approach i s 

useful for cases where the transmission line has unma t ched loads, 

accurate computation of the matrix parameters requi res additional 

effort that is not necessary with the Fourier tra ns f o rm method. The 

time domain finite diffe rence method [14) is simi lar t o the fini te 

difference approach used to find the effective d ie l ectric constan t , 

except that the time derivatives appro ximated a s we ll as the spatial 

derivatives. This additional degree of freedom g r e atly increases t he 

complexity of the derivation, as well as the nume ri cal e xpense. 
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The Fourier transform method, using both approximate fo r mulas and 

full wave solutions to determine creff(f}, has been widely used for 

determining the time domain response of microstrip and coplanar 

waveguide (CPW} structures to non-periodic signal inputs. Using 

approximate formulas for creff(f) sacrifices the accuracy of the full 

wave solution, but drastically reduces the required computer time. 

Graphs of distorted pulses using approximate formulas for the single 

microstrip have been presented [3), [37)-[41), with experimental 

results shown in [38), [42) . CPW's have also been examined with 

approximate formulas [43). Numerical predictions of pulse distortio n 

using full wave solutions have been investigated for both the single 

microstrip [44)-[4 6 ) and for CPW's [47), [48). However pulse 

distortion on coupled microstrips has not been examined from a full 

wave perspective, or for very general structures. 

1.5 Scope of Research 

Decreasing computational costs coupled with increasing 

computational speed have made the rigorous analysis of microstrip 

boundary value problems a practical choice for calculating highly 

accurate solutions, This report formulates full wave solutions of the 

boundary value problem to achieve expressions that can be solved for 

the frequency dependent parameters of very general mi crostrip 

structures. The versatility of the derivations is emphasized, allowing 

many different microstrip circuit problems to be solved . Since the 

accuracy of the solutions wa s the prime concern, extensive optimi zation 

o f the computer programs in order to reduce run time was not attempted. 
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While there are many single frequency applications for 

microstrips, the propagation of non-periodic signals on printed circuit 

lines is also an important concern, and so the degradation of pulsed 

signals is considered in this report . The use of the time domain 

Fourier transform for the calculation of transient response is 

discussed, with the emphasis on application to non-periodic signals. 

The Fourier transform method is then applied in conjunction with 

results from other sections t o predict pulse distortion on complex 

microstrip structures. The types of complex microstrip structures 

dealt with include; 

1) Multiple dielectric substrates and superstrates . 

2) Symmetric coupled conductors . 

3) Shielded and open configurations. 

The derivations for pulse distortion and other parameters are done in a 

efficient and general manner, so that the computations are both 

flexible and expedient. 

The coupling between adjacent center conductors on the microstrip 

structure is analyzed, since such results are vital for any realistic 

microstrip circuit design. The concept of even and odd modes is 

introduced and is then extended so that any numbe r of symmetrically 

center conductors can be analyzed . This approach emphasizes the 

versatility of the spectral domain approach, because no modification of 

the Green' s function is necessary for computation. Results for pulse 

dispersion on multiple conductors are presented, showing not only the 

signal degradation due to coupling, but also the effect of c r osstalk on 

adjacent lines. 
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Since modern microwave circuit design involves structures that are 

much more complicated than the simple single conductor, single layer, 

open microstrip, the Green's function is formula ted in a very general 

manner so that it is applicable to any planar geometry. First, the 

spectral domain approach is discussed for a simple structure to 

illustrate how the Green ' s function is used to calculate the microstrip 

parameters. Next, The Green's function for an arbitrary planar 

microstrip structure is derived using a rigorous full wave solution, 

giving a simple recurrence formula for its calculation. Using this 

Green's function , calculations of the effective dielectric constant f or 

multiple dielectric structures are given, showing the effect of cover 

l ayers and substrate layers on the frequency dependence of both 

multiple and single lines. These results will lead to the design of 

multi-conductor structures that have small or no coupling between 

lines. Finally , pulse dispersion on these lines is presented, showing 

the decrease in both signal distortion and crosstalk. 

Using exact formulations whenever possible, highly accura te 

results f or microstrip parameters and pulse distortion are computed. 

The time domain Fourier transform is used to calculate pulse distortion 

on complex microstrip structures. The coupling between adjacent center 

conductors is considered using an even/odd mode f ormulation. Using a 

rigorous boundary value method, a generalized Green's function i s 

derived for arbitrary p l anar structures. Numerical results for pulse 

distort i on on complex microstrip structures are presented including 

shielded and open configurations, multiple dielectric l ayers , and 

coupling with adjacent center conductors. 
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CHAPTER 2 

FULL WAVE ANALYSIS OF MICROSTRIP 

This chapter considers the microstrip structure in an exact 

formulation. First the various types of lines that can be treated 

using this approach are described, and the geometry used for the 

derivation is presented. Next, the Fourier transform used in the 

derivation is introduced and the various terms and conventions used 

throughout the report are defined. Then the spectral domain approach 

is applied to a simple structure, the shielded microstrip, to 

illustrate the use of this method. This derivation is then modified 

to better handle slot line type structures. Finally, a simple 

recursive formulation for the Green's function of a generalized planar 

structure is presented. 

2.1 The Microstrip Structur e 

There are many different types of printed circuit transmission 

lines, each appropriate for different applications, all of which can be 

solved using the Spectral-Domain Approach (SDA). Four types of these 

transmission lines are shown in Fig. 2.1; microstrip, coupled 

stripline, coplanar waveguide (CPW), and slot line . Of the four, 

microstrips have the l owest dispersion, high Q, and highest power 

handling capabilities, and while series mounting of devices is easy, 

shunt mounting is very difficult. On the other hand the CPW can mount 
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(a) Microstrip 

(b) Coplanar Waveguide 

(c) Slot line 

(d) Coupled Striplines 

Fig. 2 . 1. Common planar waveguide structures. 



1 4 

both series and shunt elements easily and can have a high Q [49], 

however it has average power handling, and dispersion cha racterist i cs . 

The slot line allows easy mounting of shunt element s , but has 

difficulty with series components. In addition, i t suffers from high 

radiation l osses , low Q, l ow power capabilities, and is highly 

dispersive. Finally, the coupled strip line offers a wide range of 

characteristic impedances, but has a low Q, average power handling, and 

average dispersion characteristics. 

The microstrip geometry used for the derivation o f the SDA's 

Green's function, as well as for the computation of the current dens i ty 

expansion functions, is shown in Fig 2.2. A standard right-handed 

cartesian coordinate system is used (the z axis is out o f the paper), 

and the structure is considered to be uniform in the z direction, 

reducing it to a two-dimensional proble m. There are N planar 

dielectric layers below the center conductor interface and M layers 

th 
above it, where the height of the i layer, upper or lower, is denoted 

' . 1 f th by h or h respect1vely. The electr1ca parameters o each i 
Ui Li 

layer are denoted by c . and~·' representing the permitivity and 
1 1 

permeability, respectively. The dielectric materials are assumed t o be 

i sot r opic , so both ~ and c are scalars, although ~ . is n ot 
i i 1 

necessarily equal to the free space value. The dielectric constan t , 

c
1

, is considered initially to be pure real (lossless case), but it 

could be generalized to be complex (lossy case). The microstrip is 

surrounded on all four s ides by perfect electric conductors (PEC's), as 

in a shielded configuration. If the particular microst rip structure is 
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to have no side walls, then a ~ oo, while if it ha s no cov e r s hee t o r 

no ground plane, then h or h ~ oo, respectivel y . 
Ul Ll 

Because the SDA is formulated for a unit impulse current source a t 

an arbitrary x location, any arrangement of conductors tha t are uni form 

in the z direction may be considered through superposi tion. I n this 

report, the position of the i th signal conductor is d e t e rmined, as in 

Figure 2.2, by the position of the center, x . , and the width, w . . In 
]_ ]_ 

addition, each of the center conductors is assume d to b e o f ze ro 

thickness so that the formulation of the problem doesn't become 

excessively complex. Although there may be any fini t e number o f t hese 

center conductors on the interface, for clarity, only one is shown. 

2.2 The Fourier Transform 

+jwt 
Throughout the pape r an e time conve ntion is used , a nd the 

th 
complex wave number in the i medium and/ or direction i s des i gna t e d by 

~ . , with a rea l part a . and an imaginary part~ - · The t wo - dimensi on a l 
l l ]_ 

Fourier transform p a ir use d with the SDA is defi n e d a s : 

= r: J_: j({3 x+(3 z) 
g(x,y,z) e x z dx dz (2 . 1 ) 

1 

(27l)2 

oo oo - j((3 x +(3 z) 

f_oo f-oo G ({3x , y, (3z ) e x z d(3x d (3z 

(2 . 2 ) 

where (3 and (3 are the wave numbe r s in the x and z direc t ions . 
X Z 

If the 

s tructure under conside rat i on i s fini t e in the x directi on , i. e . a ~ oo, 
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then the wave numbers in the x direction are di screte i n stead o f 

continuous, and a s lightly different transform pair i s used ; 

where 

~{g(x,y,z)} = G(~ ,y,~ ) xn z 

= r: r: j ({3 x+~ z) 
g(x,y,z) e xn z dx dz 

~-l{G(/3 ,y,(3 )} = g(x,y,z) 
x n z 

(3xn 
(2n-1) n 

2a 

t.(3 = n / a 
xn 

1 

(27l) 2 

00 { 00 

n=~oo I-oo 
-j~ z } "' z G({3 ,y,(3 )e d{3 

xn z z 

(2. 3 ) 

-jf3 X 
e xn t./3 

X 

( 2 . 4) 

(2. 5) 

( 2 . 6) 

This transform i s equivalent to using a Fourier series expansion i n the 

x d irection instead of a Fourier transfo rm. All Fourier trans f orm 

quantities a r e denoted wi th a "' s upe r script whil e vectors are 

underlined . 

This definition of the Fouri er transform i s not the same as the 

one that i s normally found in the literature since the expone n t of the 

exponential in (2.1) is positive i nstead of negative. It is , h owever , 

equally valid and allows the transform of the partial derivative with 
- jf3 z - z 

r espect to z to be e quivalent t o assuming an e variation, as is 

conventionally u sed; i. e ., 

~{a f (z)} = _ '(3 F(/3 ) az J z z (2 .7 ) 
-j f3 z 

'/3 z -J e 
z 

Whi l e thi s ne w definition c hanges some of properties of the Fourier 

transform, as well as some o f the tra ns f o rm pa irs , there i s a s imp le 

r elation b etween the t wo definit ions. If the transform of f(z) using 
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the more common definition is given by F(~ ), then the transform us ing z 

(2.1) is given by F(-~ ) . 
z 

2.3 The Spectral-Domain Approach 

The Spectral-Domain Approach (SDA) is preferred over other full 

wave solutions f or planar circuits , especially spatia l domain methods , 

because o f its simple formulation, high ver s atility, l ow memory 

r e quirements , short computation time, and accurate results . The 

derivat i o n of the SDA i s simpler in many ways than spatial techniques. 

For e xample , for the geomet ry o f Figure 2.2, the partial derivatives 

with respect to x and z in spatial coordinates become mul tiplica tions 

in the spectral domain. The Green's function approach used in the SDA 

ma kes it applicable to many d ifferent types of planar circuits 

including the following: 

a. An unlimited numbe r o f signa l conductors conf i ned to one plane. 

b . An unlimited number of dielectric layers above and b e l ow the 

inte rface containing the conductors . 

c. Top (cover ) and/or bottom (ground plane) conductor (either 

prese nt or absent) . 

d. Co nductor side wall s (e ithe r prese nt or absent) . 

Unlike spatial domain formu l ations, large matrices are n ot 

required t o obtain accurate re s ults with the SDA. In addit i o n, l arge 

structures , such as open microstrips , are handled as easily a s smal l er 

ones , without the huge increase in memory requirements as there is with 

spatial methods . Because the matrices u sed by t h e SDA are much smaller 

and fewe r numerical integrat i ons are needed, c omputer run time i s much 
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less than that of other formulations. Since the SDA is a full wave 

formulation, the results are very accurate, and it has even been used 

to produce a reference standard [50]. 

2.3.1 The Wave Equations in the Spectral Domain 

The SDA begins by transforming the fields and boundary conditions 

from the spatial domain to the spect ral domain in order to simplify the 

derivation process. Using a transform to solve the second order 

differential equation i s equivalent to using an eigenfunct ion 

expansion, but the formulation is more straight f orward. As indicated 

previously in Section 2.2, the Fourier transform changes b oth the z and 

x partial derivatives into multiplic ations, simplifying the electric 

and magnetic wave equations as we ll as the vector potential approach. 

Transforming, as in (2 . 1), the t i me-harmonic electric and magnetic wave 

equations for lossless media with only a current source present gives; 

+ ~2]E' = 
y-

. "' 
-JW/-L~ 

-~XJ ~ --- + ~ H = -a J~ J + [ 
a

2 2] "' " [ . "' 
By 2 y - X z-y 

--J a "' l By -z 

"·["' "' ] " [ "' a "' l + a J ~ J - ~ J + a j~ J + --8 J 
y z-x z-z z >r-y y - x 

( 2. 8) 

(2. 9) 

Since the microstrip conductor is assumed to b e infinitely thin, the r e 

is no current density in the y direction and the partial derivat i ves 

with respect to y of the x and z cur r ent densities are zero . Using 

thi s , the transfo r m of the magnetic wave equation can b e wri t ten more 

concisely as: 
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[ 
2 ] ~ ] 

8 2 .-v A .-v .-v - + {3 H = j a (3 J - (3 J 
2 y- y z-x z-z 

8y 
(2 .10) 

The transformed wave equations are second order partial 

differential equat ions of only a single v a riable, y, and so they give 

no information or constraint on the x or z variations. The x and z 

depe ndence of the problem is now contained implic i tly in the transforms 

of either the current densities or the electric fields th rough the 

functional d e pendence on (3 and (3 • To illustrate the use of t h e SDA, 
X Z 

a simple structure, the shielded microstrip is considered . First, the 

derivation f o r TMY mode is done, and the TEY fol lows . 

2.3.2 T~ Modes for the Shielded Microstrip 

The geometry of the shielded microstrip, shown i n Figure 2 . 3, is 

the equivalent to the geomet ry f ound in Figure 2 . 2 with N = M = 1, 

hu
1 

= h
2

, hLl = h
1

, x i = 0, a nd wi = w. Since the structure ha s wall s 

at a finite distance, the second Fourier transform i s used as stated i n 

(2 .3) thro ugh (2.6) . This derivation can also be generalized to the 

open microstrip structure by l e tting a ~ oo and h ~ oo a nd using the 
2 

first Fourie r trans f o rm pair o f (2.1) and (2. 2 ) . Transformi ng the 

fields and the vector p otential, ~' into the spectral domain gives : 

=a A (x,y,z) "' a 'A <f3 ,y,f3 > (2 . 11) A A 
y y y y X Z 

E™ 1 8
2 

F:™ 
(3x 8 "' (2 . 1 2a ) -jWj.lC 8x8y Ay Wj..LC By 

A 
X X y 

[ ' l , 1 [ i '] N E ™ . 1 8 2 "'™ (2 .1 2b) -J- -+(3 A E -J- -+(3 A 
y Wj..LC By2 y y Wj..LC By 2 y 

2 (3z a E™ , 1 8 A .-vTM "' (2 .12c) E A 
z -JWj.lC 8zBy y z W/l C By y 

20 



y 

h2 I I c;z ,J.Lz 

h 
1 G.l,f..Ll 

w---j ~ 

-a 

z 
Fig. 2.3 . Geometry for two layer, shielded microstrip 

structure. 

X 
a 

N 
>-' 



H™ 1 a 
---A 

X 11 az y 

H™ 0 
y 

TM 1 a 
H - ax A 

z 11 y 

The scalar potential A . <f3 ,y,f3 l 
Yl X z 

is chosen as follows: 

REGION 1: (0 ~ y ~ h ) 
1 

A = B ((3 ,(3 ) cosh(a y) 
yl 1 X Z y1 

REGION 2: (h ~ y ~ h ) 
1 2 

A = B ({3 ,(3 ) cosh[a (h +h -y) J 
y2 2 X Z y2 2 1 

"'T M 
j 

(3z 
"' (2 .12d) H -- A 

X 11 y 

"'™ H 
y 

0 (2 . 12e) 

"-'T M 
j 

(3x 
"' (2 .1 2f) H A 

z 11 y 

for the 
th 

layer, 1 2, i i or 

(2. 13) 

{2. 14) 

B ({3 ,(3 ) and B ({3 ,(3 ) are unknown function s of the transform 
1 X Z 2 X Z 

variables, which are to be determined from the boundary conditions. 

They are abbreviated as B and B througho ut . A and A are chosen 
1 2 y 1 y2 

based on; 1) the tangential ~ fields vanishing at y = 0 (at t he ground 

plane) and 2) the tangential _E fields vanishing at y = h +h The 
1 2 

hyperbolic cosine is chosen since the structure should have standing 

waves in the y direction. 

If the TMY mode is an independent solution of the boundary value 

problem, then either the x or the z directed fields can be u sed to 

enforce the boundary conditions. On the other hand, if using the X and 

z directed fields gives different answers, then the TMY mode is not a 

solution and the problem must be solved as a supe rposit ion of two 

orthogonal modes. Using the scalar potentials in (2.13) and (2.14) 

with the equations f or the fields in (2.1 2a-f ), the e l ectric and 

magnetic fi elds in each regio n are calculated. 
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REGION 1 : 

"' E 
Xl 

"' E 
zl 

"' H 
xl 

"' H 
Z1 

where 

(32 
1 

REGION 2 : 

"' E 
X2 

"' E 
z2 

H' 
X2 

"' H 
Z2 

where 

"' (3xcx.y1 
sinh (ex. y) -B 

1 Will cl yl 

"' 
(3zcx.yl 

sinh (ex. y) - B 
1 Will cl y1 

j 
"' (3z 
B -- cosh(cx. y) 

1 11 y 1 
1 

-j "' 
(3x 

B cosh (ex. y) 
1 Ill y l 

(3 2 + (32 2 2 - ex. w 111 c l X z yl 

"' B 
2 

"' B 
2 

j 

-j 

(3xcx.y2 
sinh [ex. (h +h -y) J 

WIJ-2 c 2 y2 1 2 

(3 z cx.y2 
sinh[cx. (h +h -y)] 

WIJ-2 c2 y 2 1 2 

"' {3z 
B -- cosh[cx. (h +h -y)] 

2 11 y2 1 2 

"' B 
2 

2 

{3x 
cosh[cx. (h +h -y)] 

112 y 2 1 2 

2 - ex. 
y2 

(2.1 5a ) 

(2 .15b) 

(2 .1 5c) 

(2 .15d) 

(2 .1 6) 

(2.17a) 

(2 .1 7b ) 

(2.1 7c) 

(2 .1 7d) 

(2 .1 8) 

Now that the expression for the fields have been specified, the 

boundary conditions can be applied to eliminate B 
1 

1) E I -x l y =\ Ex2,y=h
1 

"' 
{3xcx.y1 

sinh (ex. h ) "' 
{3xcx.y2 

sinh (ex. h ) -B = B 
1 WIJ.l c l y l 1 2 WIJ. 2 C2 y 2 2 

ex. c 
r111 rl 

sinh (ex. h ) 
"' = - 8 y 2 y 2 2 
B 

sinh (ex. h ) 1 2 ex. c 
r211rz yl yl 1 

The z directed electric fields are now c onsidered . 

"' and B . 
2 

(2 . 1 9) 

(2. 20) 
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2
) EZ1 1y=hl- Ez2 1y=hl 

~zayl ~zay2 
-B sinh(a h) = B sinh(a h) 

1 w11
1 

c
1 

yl 1 2 w11
2 

c
2 

y2 2 
(2. 21) 

a c 11 sinh (a h ) 
B B y2 r 1 rl y2 2 

1 2 a c 11 sinh (a h ) 
y1 r 2 r2 yl 1 

(2. 22) 

This gives the same result as the x fields, as desired. 

Next , the discontinuity o f the H fields at the center conductor 

interfac e due to the presence o f a current source is enforced. 

3) 
Hx11y=hl 

- H = J --- I ---™ 
X2 y=h

1 
Z 

j "' ~z 
cosh (a h ) j "' 

{3z 
B - B -cosh(a h) 

1 Il l y l 1 2 112 y 2 2 

Substituting in forB using (2.20) 
1 

~ a c 

"'™ J 
z 

-j 8 z Y2 r l coth(a h )sinh(a h) 
2 11 a c y 1 1 y 2 2 

{3z 
-j B cosh (a h ) 

2 112 y2 2 2 y l r2 

[

c coth(a h) 
B r 1 y 1 1 

2 a 
yl 

c coth(a h) ] r2 y 2 2 . 
+ =J a 

y 2 

Let 

"'™ y 
c coth(a h ) 

rl yl 1 

Sl a 
yl 

c coth (a h ) 
r 2 y2 2 

a 
"'™ y 

52 
y 2 

This simplifies ( 2 .25 ) to 

"' c r 2112 "'™ ["'™ "'™] -1 B = j --a- J csch (a h ) Y + Y 
2 a ,... z y 2 2 sl s 2 

y2 z 

(2. 23) 

"'™ J 
z 

(2 . 24 ) 

(2 . 25) 

(2. 26a) 

(2 . 26b) 

(2 . 27) 

Nex t , the z directed magne tic f i e lds are checked to see if they 

give the same ans wer . 

Hzl I y =hl "' I "'™ 4) - H -J 
Z2 y=\ X 

- j "' 
~X 

cosh(a h) j "' 
~X 

cosh(a h) 
"''!' M 

(2. 28) B + B - J 
1 Il l yl 1 2 112 y 2 2 X 
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Using (2.20) forB as before, 
1 

~ a e ~ 
-j B x Y2 r 1 coth(a h )sinh(a h) -j B x cosh(a h) 

2 11 a e y 1 1 y 2 2 2 11
2 

y 2 2 
2 y 1 r 2 

"-'1'M 
- J 

X 

(2 . 2 9) 

Simplifying this equation using (2.26a) and (2 . 26b) leads to 

8 
2 [

y™ + y™] - 1 
s1 s 2 

(2 . 30 ) 

In order for the TMY mode to be an independent sol ution i n t he 

s p ectral d omain, (2 . 27) shoul d b e equivalent t o ( 2 . 30) . This occurs if 

the x a nd z directed modal c urrents are related a s follows ; 

~ :J™ = ~ :J™ 
Z X X Z 

(2. 3 1 ) 

To show that this relation is indeed true, the magnetic wave 

equation with only an electric current source present, as in (2 .1 0 ) is 

u s e d : 

[t__ + ~ 2]« 
8y 2 y y 

( 2 .32) 

Si nce the TMY mo de has n o H , the left side of (2.32) is zero and so 
y 

~ :J™ 
X Z 

(3 :J™ 
Z X 

(2 . 33) 

There f o re the TMY mode satisfies all the boundary c o nditions i n 

the spectral domain. To complete the solution, the tangentia l fi eld s 

at the center c o nduc to r interfac e are required. 

( 2 .17a) and (2 .17b) with (2. 27), and evaluating 

E'™ j 
1 ~X "'™ "'™ 

~z 
z J 

X2 we z 
0 

"-'T M 
j 

1 "'™ "'™ E z J 
Z2 we z 

0 

Re placi ng B in 
2 

them a t y h lea d s t o 
1 

(2. 34 ) 

(2. 35) 
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where z™ is the modal input impedance, defined as 

.vTM [ "'TM "'™] -1 

z = y + y 
S1 S2 

2 . 3.3 TeY Modes for the Shielded Microstrip 

Having solved the TMY mode, the TEY mode is considered. 

a F (x,y,z) F = 
y y 

ETE 1 a - az 
F 

X c y 

ET E 0 
y 

ETE 1 a 
c ax 

F 
z y 

HTE 1 82 
-jWj.lC 8x8y F 

X y 

[ 2 l HT E . 1 a 2 
-)- -+(3 F 

y Wj.lC By2 y 

HT E 1 82 
-jWj.lC 8z8y F 

z y 

The scalar potential F' . <f3 ,y,f3 l 
Yl X z 

is chosen as follows: 

REGION 1: (0 ~ y ~ h ) 
1 

F =A ({3 ,(3 ) sinh(a y) 
y 1 1 X Z y 1 

REGION 2: (h ~ y ~ h ) 
1 2 

F =A ((3 ,(3 ) sinh[a (h +h -y) 1 
y 2 2 X Z y 2 2 1 

"' a F' <f3 ,y,f3 , F 
y y X Z 

"-'TE j 
[3z 

F' E 
X c y 

.vT E 
E 0 

y 

"'TE j 
(3x 

"' E F 
z c y 

"'TE (3x a "' H 
By 

F 
X Wj.lC y 

, 1 [ i j N "'TE H -)- - +{3 F 
y Wj.lC By 2 y 

-vT E (3z a "' H 
Wj.lC By 

F 
z y 

for the 
th 

layer, i i 

(2. 36) 

(2. 37) 

(2. 38a) 

(2. 38b) 

(2. 38c) 

(2. 38d) 

(2. 38e ) 

(2. 38f) 

1 or 2, 

(2. 39) 

(2. 4 0) 

A ({3 , [3 ) and A ({3 ,[3 ) are unknown functions of the transform 
1 X Z 2 X Z 

variabl es , which are to be determined from the boundary conditions. 

They are abbreviated as A and A throughout. F and F are chosen 
1 2 y l y 2 

based on ; 1) the tangential E fields vani shing a t y = 0 (at the ground 
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plane) and 2) the tangential ~ fields vanishing at y = h
1
+ h

2
. The 

hyperbolic sine is chosen since the structure should have standing 

waves in the y direction. 

As with the TMY mode, if the TEY mode is an independen t solution 

of the boundary value problem, then either the x or the z directed 

fields can be used to enforce the boundary conditions. Likewise, if 

they are not equivalent then the TEY mode isn't an independent solution 

and the problem needs to b e solved with a superposition of two 

orthogonal modes. Using the scalar potentials in (2.3 9) and (2.40) 

with the equations for the fields in (2.38a-f), the elec tric and 

magnetic fields in each region are calculated. 

REGION 1: 

E: 
Xl 

"' E 
Z1 

"' H 
Xl 

"' H 
Zl 

where 

REGION 2: 

"' E 
X2 

E: 
z 2 

li 
x 2 

-j "' 
(3z 

A - s inh (ex y) 
1 c yl 

1 

j "' 
(3x 

A - s inh (ex y) 
1 c

1 
y 1 

"' 
(3xexyl 

cosh (ex y) -A 
1 W/11 cl y1 

"' 
(3zexyl 

-A 
1 

-j 

W/11 c1 
cosh (ex y) 

y1 

"' A 
2 

2 
- ex 

yl 

(3z 
sinh [cx (h +h -y) J 

c y 2 1 2 
2 

j A 
(3x 
- sinh[cx (h +h -y )] 

2 c y 2 1 2 
2 

"' 
(3 x exy2 

A cos h[ex (h +h -y)] 
2 W/12 c2 y 2 1 2 

(2 . 41a) 

(2.41b) 

(2. 41c) 

(2 . 41d ) 

(2. 41) 

(2 . 4 2a) 

(2 . 42b) 

( 2 . 4 2c) 
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H' 
z2 

(2. 42d) 

where 

(2. 42 ) 

Now that the fields have be en determined, the bounda r y condi tions 

be applied to eliminate "' "' can A and A. 
1 2 

1) Ex1 ,y=h
1 

- E I x 2 y=h
1 

-j "' f3z 
-j "' 

{3z 
sinh (o:: h ) A - sinh{o:: h) = A 

1 c y1 1 2 c y2 2 
1 2 
c sinh {o:: h ) 

"' r 1 y 2 2 
A2 c sinh {o:: h ) 

r 2 y1 1 
A 

1 

The z directed electric fields are now conside r ed. 

2) Ez1,y=h
1

- Ez2 ,y=h
1 

"' f3x 
-j A - sinh{o:: h) = 

1 c
1 

y1 1 

c sinh (o:: h ) A r1 y 2 2 
2 c sinh {o:: h ) 

r 2 y 1 1 
A 

1 

{3x 
-j A s inh (o:: h ) 

2 c 2 y 2 2 

which is the same result as using the x fields, as required. 

(2 . 4 3 ) 

( 2 . 4 4) 

{2. 45) 

(2 . 46) 

Next, the di scontinui ty of the ~ fields at the c e nte r conductor 

interface due to the presence of a current source is enforced . 

3) Hx1,y=h
1 

- Hx2,y=h
1 

rvTE 
= J 

z 

"' 
f3xo::yl 

cosh {o:: h ) "' {3xo::y2 rvTE 
-A - A ----- cosh(o:: h) J 

1 WJ-1.1 c1 y1 1 2 WJ-1. C y 2 2 z 
2 2 

Substituting in f o r A using {2.44) leads t o 
1 

{3xo::y1 -A ----- c oth(o:: h )sinh(o:: h) 
2 wJ-1.

1 
c

2 
y1 1 y 2 2 

[

o:: coth {o:: h ) A y 1 y1 1 
2 J..l.r l 

o:: coth (o:: h ) l + y2 y 2 2 

J..l.r 2 

WJ-1. OC 2 rvTE 
----- J csch (o:: h) 

{3x z y 2 2 

{2. 4 7) 

(2.4 8 ) 

{ 2 . 4 9 ) 
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Let 

a coth (a h ) 
YTE yl y l 1 

Sl 11r1 
(2. 5 0a) 

a coth(a h) 
YTE y2 y 2 2 

S2 11r 2 

(2. SOb) 

This simplifies (2. 49) t o 

A 
2 

( 2. 51) 
[
"'TE "'TE] -l y + y 

Sl S 2 

Next, the z directed magnetic fields are checked to see if they 

give the same answer. 

4) 
Hzl,y=\ HZ 2 , y=hl 

"'TE - -J 
X 

"' 
f3xay1 

"' -A cosh (a h ) - A 
1 Wil l cl yl 1 2 

Using (2.44) for A as before, 
1 

(3xay2 "'TE cosh (a h ) - J 
W#l2 c2 y2 2 X 

f3xay1 f3xay 2 -A coth(a h )sinh(a h) -A cosh(a h) 
2 W#l

1
C

2 
yl 1 y2 2 2 W#l

2
c

2 
y2 2 

Simplifying this equation using (2.50a) and (2 . 50b) leads to 

A 
2 [

"'TE "'TE] -l y + y 
sl s2 

(2. 52) 

(2. 53) 

(2. 54) 

In order for the TEY mode to be an independent solution in the 

spectral domain , (2.51) should be equivalent t o (2.54) . This occ u rs if 

the x and z directed modal currents are related as f o llows; 

( 2 . 55) 

To show that this relation is indeed true , the conti nuity equation 

is used with a time varying volume charge dens ity, q(x,z;t), equal to 

jwt 
p (x,z)e , giving 

v 

'i]oJ a [ · t] - at pv (X, z) eJW (2. 56) 
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Computing the time derivative and suppressing the t ime dependence 

reduces (2 . 56) to 

a + ~ J + a J ax Jx ay y az z 
- jw p (x, z) 

v 
(2. 57) 

Fourier transforming the (2.57) twice, with res pec t t o x and z as in 

. "' (2 . 1) and lett1ng J = 0 (due to zero strip thickness ) l eads to 
y 

, "'TE , "'TE , "' 
-J{3J - ]{3J =-JWP (2.58) 

X X Z Z V 

For a TEY field, the normal ~ field (E ) is zero everywhe re. The 
y 

boundary condition of n o cE p then implies that p (x,z) = 0 
v v 

everywhere , and so p ({3 ,{3 ) 
V X Z 

0 also. Therefore (2.58) reduces to 

(2. 59) 

Thus the TEY mode inde pendently satisfies all the boundary 

conditions in the s pectral domain. To complete the sol u tio n, the 

tangential fields at the center conductor interface are required . 

. "' Replac1ng A in (2 . 42a) and (2 . 42b ) with (2 . 51), and evaluating them at 
2 

y h leads to 
1 

"'TE 
j E WJlo X2 

"'TE 
-j E WJlo Z2 

{3z "'TE "'TE 

{3x 
z J 

z 

"'TE z "'T E 
J 

z 

where Z TE is the TEY modal input impedan c e, defined as : 

(2 0 60) 

(2. 6 1 ) 

(2. 62) 

The tange ntial electric fields at the center conductor interface 

have been determined f o r each mode in te rms of the modal curre nt 

dens ities . However, s ince solution of the microstrip problem r e quires 

the total fields at the interfa ce , the moda l fields of (2 .34), (2.35 ), 
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(2.60) and (2 . 61) are added together to form the x and z directe d 

fields giving 

"' E'™ .-vTE 
j { [ 1 {3 X .-vTM] .-vTM [ {3 Z rvT E] rv1' E } E + E - - Z J + Wll - Z J (2.63a) 

X2 X2 X2 we f3 z o {3 z 
0 Z X 

"' "'™ ETE j { [ 1 "'™] .-vTM [ "'T E] rvT E } E E + - Z J - Wll Z J (2. 63b) 
z2 Z2 Z2 wco z 0 z 

2.3.3 Current Density Relations 

To combine the TEY and TMY modal solutions there needs to be an 

• , .-vT E .-vT E rvT M .-vT M 
equation relating the modal current dens1t1es J , J , J , and J , 

Z X Z X 

to the total current densities J and J . Each modal s olution, TEY or 
X z 

TMY, contains only one independent current component, the other is 

related to it by either (2 .33 ) or (2.59) . Therefore the combined modal 

solution for the microstrip must contain two independent current 

distributions . Since the total fields are a combination of the modal 

fields , the total current densities can be written a s the sum of the 

modal current densities; that is 

.-vTM "'JTE 
J + z z J 

z 
(2 . 64) 

.-vTM .-vT E 
J + J 

X X 
J 

X 
(2. 65) 

Substituting (2.33) and (2.59) into (2.65) leads to 

{3 X .-vT E {3 Z 

{3z - Jz f3x J 
X 

"'™ J 
z 

(2. 66) 

Multiplying (2. 64) by f3/f3x reduces to 

"' 
{3z 

"'™ 
{3z .-vTE f3z 

J 
{3x 

J 
{3x 

+ J 
(3x z z z 

(2. 67) 

Adding (2.67) to (2 . 66) leads to 

~™ [~" ~x] "' f3z 
"' J - + 

{3z 
J 

f3x 
+ J z {3 z X 

X 

(2. 68) 



Multiplying both sides of (2.68) by~~ /(~ 2 + ~ 2 ), the c urre nt d e n s ity 
X Z X Z 

"'TM 
J can be written as 

z 

~ (5 ~ +J ~ ) 
Z Z Z X X 

(~2 +~2) 
X Z 

"'™ J 
z 

(2. 69) 

To get the relationship f o r the TEY current d e ns i t y, multiply 

(2. 66) by -~ /~ reduces 
Z X 

to 

-J 
~z "'™ -J 

"'TE [::]' X ~X z 

Adding (2. 70) to 

J TE [ 1 + ~!] 
z ~2 

X 

+ J 
z 

(2. 64) leads 

J 
z 

"' ~z 
- J -

X ~ 
X 

(2 . 70 ) 

to 

(2. 71) 

Multiplying both sides o f (2 .71) by ~2 /(~ 2 + ~ 2 ), the curre n t d e nsity 
X X Z 

J TE c an be written as 
z 

.-vTE 
J 

z 

2 . 3.5 Green's Functions 

( 2. 72 ) 

Having obtaine d relations hips betwee n the modal a n d t o t a l cu r r ent 

densities, the total electric fields at the interface can be e xpres sed 

in t e rms of the t otal curre nt d e n s ities. Using (2 .7 2 ) a nd (2 . 69) t o 

expre ss the modal currents in terms o f the t o tal c urrent s in (2. 63a ) 

and (2.63b), the t o tal fi e lds at the c ente r c ondu c t or i n terface c a n be 

wr itten a s 
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E 
x 2 

E 
z2 

E 

where 

E 

G 
zz 

G 
XX 

G xz 

Z2 

X2 

j 

{32+{32 
X Z 

j ---
{32+{32 

X Z 

j 
we 

j 
we 

G 
zx 

0 

0 

{ [
{3X{3Z TM TEl [{3~ TM 2 TEl} J --Z + Wj.L {3 {3 Z +J -z - Wj.L {3 Z 

z we o z x x we o z 
0 0 

{ [
{3! TM 0 2 TEl [{3x{3z TM J -Z - Wj.L ,_, Z +J --Z + 

z we o x x we 
0 0 

[ J G +J G J Z ZZ X XZ 

[ J G +J G ] 
Z ZX X XX 

Equations (2.74a) and (2.74b), for a given frequency and 

(2. 73a) 

( 2 .73b) 

(2. 74a) 

(2. 74b) 

(2. 75a) 

(2. 75b) 

( 2 . 75c) 

structural parameters , have two unknown variables; {3x and {3z ' and four 

unknown functions; J (/3 ), J ({3 ), E (/3 ,{3 ) , and E (/3 ,{3). 
Z X X X Z2 X Z X2 X Z 

Furthermore, the magnetic and e l ectri c wave equations, after being 

transformed twice, give no information or constraints on the form of 

the four functions, as it does in the spatial domain . It is 

advantageous, then to use a method which can eliminate the four 

functions and one variable. 

2 . 3.6 Galerkin's Method 

Galerkin 's method is a method of mome nts technique that uses t he 

same expansion and test ing functions to solve an integra l equation . To 
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apply this method , the current densities are expanded into complete 

sets of basis functions 

to 
"' La J J (2.76a) 

z n zn 
n=l 

to 
"' [bJ J (2. 76b) 

X m xm 
m=l 

where a and b are unknown constants that spec ify the amplitudes of 
n m 

each current expansion functi o n. 

The x and z current densities in the electric fields of (2.74a) 

and (2.74b) are now replaced by the series expansions for the curre nts 

of (2 .76a) and (2.76b). This replaces the unkno wn x and z current 

densities with known basis functions of unknown amplitude, resulting 

in, 
to to 

"' La J G 1: b J G E + (2. 77a) 
z2 n=l n zn zz m=l m xm zx 

to to 
"' 1: a 'J G 1: b 'J G E + (2. 77b) 

X2 n=l n zn zx m=l m xm xx 

Now (2.77a) is multiplied by the complex conjugate of (2.76a) and 

(2.77b) is multiplied by the complex conjugate of (2.76b) which g i ves 

00 

"'* "' La J E n zn z2 
n=l 

00 

"'* "' L b J E 
m=l m xm x2 

n~lanJ:n[n~lanJ,nG,, + m~lbmJxmG,,] (2 .7Bal 
to "'* [ 00 'V ~ (X) 'V I'V l 

= m~lbmJxm n~lanJznGzx + m~lbmJxmGxx (2 . 78b) 

Integrating both sides of (2.78a) and (2 . 78b) from minus infinity to 

plus infinity with respect to ~ gives 
X 

},an[( J:nE,,d~x] },an[},alnn + j
1
blmn] 

j
1
bm[C J:ix2d~x] j

1
bm[J,•lnm + j,bmKn.n] 

(2. 79a) 

(2 . 79b) 
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where for open configuration (a = oo) 

00 

K J 'J* <f3 >'J <£3 >'G <f3 ,f3 > d{3x (2. 80a) 
nn zn x zn x zz x z 

-00 

00 

K J 'J* <f3 >'J <f3 >'G <f3 ,f3 > d{3 (2.80b) 
mn zn x xm x zx x z X 

-00 

00 

K J 'J* <f3 >'J <f3 >'G <f3 ,f3 > d{3 (2. 80c) 
nm xm x zn x zx x z X 

-00 

00 

K J 'J* <f3 >'J <£3 >'G <f3 ,f3 > d{3x (2. 80d) 
mm Xffi X Xffi X XX X Z 

-oo 

For shielded configurations (a ~ oo) the integrations are replaced by 

summations since {3 is a discrete instead of a c ontinuous variable and 
X 

d{3 is replaced by ~(3 as in (2.5) and (2 .6 ). Using the se changes in 
X X 

the above f ou r equations gives 

00 
N* ~ N 

K E J ({3 . )J ({3 .) G ({3 . ,{3) ~(3 (2. 81a) 
nn 

i 
zn x~ zn x~ zz x~ z X 

=- co 
00 

E 
N* N N 

~(3 K J ({3 . )J ({3 .) G ({3 ,,(3) (2 . 81b) 
mn 

i 
zn x~ xm x~ zx x~ z X 

=-co 
00 

E 
N* N N 

K J ({3 .)J ({3 .)G ({3 ,,(3) ~(3 (2 . 81c) 
nm 

i 
xm x~ zn x~ zx x~ z X 

=-co 
00 

E 
N * N N 

~(3 K J ({3 . ) J ({3 . ) G ({3 . ' (3 ) (2. 8 1 d) 
mm 

i 
Xffi Xl Xffi X~ XX Xl Z X 

= -co 

In practice , t he integrat i ons in (2 .80) wil l be d o ne numerical ly, 

so (2 . 81) with finit e limits for the summations, are more 

representative of the a c tual equations that need to be compu ted . 

The left hand s ides of (2. 79a ) and (2 . 79b) can b e s hown t o b e zero 

through the application o f Parseval' s theo rem, which states (51): 

Given two functions f(t) and g(t) that are Fourier transformable 

with transforms represen ted by 
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g (t) and f(t) (2. 82a) 

then 

J 00 

g(t)f(t) dt = 2~ J 00 

G(w)F* (w) dw 
-00 -00 

(2. 82b) 

* where denotes the complex conjugate. Thus the integra tion of the 

left hand side of (2.79a) is 
00 

f J* <~ >E <~ .~ > d~ zn X Z2 X Z X 
-00 

00 

= 2n f J (x)E (x,~ )dx zn z2 z 
-oo 

(2. 83) 

Note that the current density exists only on t he st rip and the 

tangential electric fields are zero there because it i s a p e rfe ct 

electric conductor. The tangential electric fields , on the o ther hand, 

are n on-zero only where there is not a conductor, and t herefo re whe re 

there is no current density. Thus the product of the c urrent density 

and electric field is always zero since neither is non-zero where the 

other exists. Therefore, the integrand is zero f or all x and so the 

integration in the spatial domain is also zero . Since the integration 

in the spatial domain is zero, through Parseval's theore m, the 

integration in the spectral domain is also zero . I n a similar fa s hi on, 

the left side of (2 . 79b) can also be shown to be ze r o . Repla c ing the 

infinite limits of the summations with finite one s, ( 2 . 79a) and (2 . 79b) 

become 

i: b K l m=l m mn 
0 (2. 84a) 

(2 . 84b) 

where N and M are the total number of current dens ities used in the 

expans ion. 



These equations can be solved numerically for ~ as a function of 
z 

frequency and/or structural parameters by using a nonlinear equation 

solver to find the zero of the determinant of the resulting matrix. To 

obtain an exact solution, the number of basis functions used must be 

infinite. However, if the basis functions are chosen properly, so that 

they closely mode l the actual current distributions , then few terms are 

necessary to obtain very good results. For frequencies well into the 

dispersive region of the structure, only a two by two matrix {i.e. M=l, 

N=l) is necessary to get very good results . 

2.3.7 Slot Lines and Coplanar Waveguides 

For slot line and CPW type structures, the electric fields exist 

over a smaller portion of the center conductor interface than the 

current densities. Therefore it is usually more convenient to specify 

the electric fields in the spaces as opposed to the currents on the 

conductors. To solve these types of proble ms, it is advantageous to 

reformulate (2. 74 a ) and {2.74b) so that the currents are expressed in 

terms of the electric fields. 

The analysis begins by simplifying {2 .74a-b)for the fields on the 

conductor interface. Both s ides of these equations a re multiplied by 

-j (~2 +~ 2 ) and they can then be written as 
WJ.lO X Z 

-j E <~2 +~2l 
WJ.l

0 
z2 x z 

-j "' 2 2 
-E {~ +~ ) 
WJ10 X2 X Z 

{2. 85a) 

(2. 85b) 
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These equations are now in the form of a matrix equation, i.e . 

(2. 86) 

where 

a = (2.8 7a ) 

b (2 . 87b) 

The matrix equation in (2.86) can be solved for J and J by 
X Z 

multipl ying both sides by the inverse of the square matrix; i.e. , 

where 

e = 

f 

g 

2 
c/ (ca-b ) 

2 
-b/ (ca-b ) 

2 
a/ (ca-b ) 

Begin by finding the denominator of the matrix elements 

(ca-b2) = [(3 !fl~ 2 ZTM _ (3!zT E] [(3!(3~ 2 ZTM _ (3!z TE] 

2 
(ca-b ) 

2 
(ca-b ) 

2 
(ca-b ) 

-[(3!(3! {fl~ 2 ZTM + ZTE}] 2 

2 
(3 2(32(3-4ZTM -fl4(3-2ZTMZTE_(34fl-2ZTMZTM 
xzo zo x o 

(2. 88) 

(2.89a) 

(2. 89b) 

(2 . 89c) 

(2. 90) 

(2. 91) 

(2 . 94) 

(2 . 95) 
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Let 

y™ 1 /ZTM (2. 96a) 

1/ZTE (2. 96b) 

Using these s ubstitutions with the equation for the denominator in 

(2.95), the elements of the inverted matrix are; 

2 [.s2 {32YTM - ,S!YTE] [.s! +,S! r 2 e = c/ (ca-b ) 
z 0 

f 
2 

- b/ (ca-b ) {3 (3 [y™ ,S~YTE] [(3! +{3! r 2 + 
X Z 

2 [{32 {32YTM - (3!YTE] [(3!+(3!r 2 g = a/ (ca-b ) 
X 0 

Substituting back into the matrix and writing out the equa tions 

where 

J 
z 

J 
X 

H 
zz 

H 
XX 

H 
xz 

-j [ E H +E H ] 
w~0 z2 zz x2 xz 

-j [ E H +E H ] 
we z2 zx x2 xx 

0 

(2. 97a) 

(2 . 97b) 

(2.97c) 

(2. 98a) 

(2. 98b) 

(2 . 99a) 

(2 . 99b) 

(2 . 99c) 

Equations (2.98a) and (2.98b) can then be solved in the same 

manner as (2.76a) and (2.76b) for {3 by expanding the electric fields 
z 

instead of the c urrents. The expansion funct i ons f or the electric 

field are chosen to be the same as the current expansion functions, 

except that the J functions are used for E expansions and the J 
zn xm xm 

functions are used for the E expansions. 
zn 
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2.3.8 Green's Function for Multilayer Structures 

With the increasing emphasis on MMIC technology , the need to 

compute microstrip parameters for multilayer structures has become more 

important. The introduction of additional substrate layers, even 

relatively thin ones, h as a strong effect on the effective dielectric 

constant of the structure [52 ) . In general, the addition of 

superstrates does not significantly affect the parameters of planar 

circuits. However , in certain cases , especia l ly when the circuit is 

shielded, these layers also can have a large impact on the propagation 

characteristics of the structure. Although the effect of multiple 

layers is very important, almost all of the approximate formulations 

have been done for a single dielectric substrate, and they cannot be 

modified to handle more general cases. However, because of their exact 

formulation, most full wave solutions can treat the mul ti layer problem. 

One drawback with using full wave solutions, such as the SDA, to 

solve multilayer problems is that they normal l y require a different 

computer program for each structure that would pote ntially be studied . 

In the case of the SDA, a new Green's function must be derived for each 

possible configuration by solving the appropriate boundary value 

problem. As the number of layers increases, the number of u n known 

constants and equations in the boundary value problem quadruples. Thus 

to obtain the Green's function of a structure with six dielectric 

. X X Z Z , 
layers using a comb1nation of TE , TM , TE , or TM modes would requ1re 

simultaneously solving twenty four equations for twenty four unknowns. 

If TEY and TMY modes are used, the problem simplifies slightly to two 



separate sets of twelve equations and twelve unknowns . Thus the 

development of an easily computed, generalized Green ' s function f o r 

planar printed circuit lines will greatly simplify both the theoretical 

development as well as the computational process. 

In this section, a general Green's function is presented that is 

easily computed through a recursive formulation. This Green's function 

is applicable to structures with any number of l ayers above or below 

the center conductor interface. Since the information about the y 

variations in the structure are contained in the moda l input 

i mpedances, they are the only part of the Green' s function that must be 

recalculated for multi-layer structures. The input i mpedance for 

either the TEY or TMY mode can be thought of as a parallel combinatio n 

of the admittances seen above and below the center conductor in t erface , 

i.e. 

1 
{2.100) 

.-v(i) "'(i) 
y +Y 

LN UM 

where i is either TE or TM , L and u indicate the l ower and uppe r l aye rs 

respectively, and N and M are the total number of planar l ayers below 

and above the interface, as in Fig. 2.2. 
. "' ( i) 

The adm~ t tances Y are 
( j) 

determined using a recursive formulation for either the upper o r lower 

layers, beginning with j = L1 or Ul through j = LN or UM , using 

"'™ y 
( j ) 

"'TE y 
( j) 

"'™ "'TM 2 2 
Y Y +a: I 11 

S( j) ( j - 1) y( j ) r( j) 

"'™ y "'™ + y 
s (j) ( j-1) 

"'T E "'TE 2 2 
Y Y +c /a 

S(j) (j-1) r( j) y( j ) 

"'TE + y 
( j -1 ) 

{2.1 01) 

{2 .1 02) 
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YTE 
s (j) 

"'™ y 
s ( j ) 

a coth [a h ] 
y(j) y( j) (j) 

llr ( j l 

cr(j) coth [ ay<jl h( jl ] 

a 
y ( j) 

(2 .103) 

(2 .104) 

"' ( i) 
Y can be thought of as the input admittance seen looki ng outward 

(j) 

th "'(i ) 
through the j layer (away from the conductor interface) and Y is 

s (j) 

the self admittance of the layer for the particula r mode c onfiguration. 

For j = u1 or L1 , then the ( j -1) layer, uo or LO, is a perfect 

electric conductor (i.e., a ground plane or cover sheet) , and 

"' ( i ) Y ~ oo for k = u or L, since a perfect conducto r has zero 
( k) 0 , 

resistance. Taking the limit of either (2.101) or ( 2 .102b) as Y Ci l 
( k) 0 

goes to infinity, then y<il 
(k) 1 

"' ( i) = y 
s (k) 1 

th 
If the (kl 1 layer is dielectric of infinite height (i .e., a 

structure with no ground plane or cover sheet), then h ~ oo a nd 
( k) 1 

therefore coth(a h ) ~ 1, respectively. Th e conditions f o r 
y(k)1 (k)l 

---( i ) "'(i) 
Y and Y are the same as above, as though there is a conductor 

(k) 0 (k) 1 

at an infinite distance. This is a valid assumpti on since the outward 

radiation condition specifies that ~ ~ 0 as y ~ ±oo . This particular 

configuration, no ground plane and/or cover sheet, results i n 

"'TE y 
(k) 1 

"'™ y 
( k ) 1 

"'TE y 
s (k) 1 

"'™ y 
s { k) 1 

a 111 yC kll r(k)l 

c /a 
r(k ll yCk l l 

(2 .10 5 ) 

(2 .1 06) 

Note that these equations are the same for l ayers bot h above and 

below the conductor interface because the uniqueness theorem states 

that solution of the boundary value problem is i nvariant to the method 

o f solution (if d o ne correctly) . Certainly it i s not possible for the 

structure to 'know ' which layers are 'above ' or ' below '. This symme t ry 
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in the equations is valid only for strips of vani s hingly small 

thickness and becomes invalid when the strip thickness approaches the 

height of the dielectric layer that contains it . 

Thus the Spectral Domai n Approach i s a simple , fa st and efficient 

method for determining the propagation constants of p lana r transmis s ion 

lines. Starting by Fourier transforming of all the field quantities, 

the derivation of the Green's function is simplified . TEY and TMY 

modes are then used because they can indepe ndently sati sfy the boundary 

condition in the spectral domain. The total elect ric fields at the 

interface can then be obtained by relating the moda l currents t o the 

total current densities. After the total electric fields are f ound, 

the total currents are expanded into a complete set of basis funct ions 

s o that the problem can be solved using Galerkin' s method. Finally the 

equat i ons are solved numerically to obtain the propagation constants of 

the structure unde r consideration. 
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CHAPTER 3 

TRANSIENT SIGNAL ANALYSIS 

While many applications of printed circuit transmission lines 

require only single frequency operation , there al s o is a demand for 

circuits that use finite time domain signals. This chapter presents 

the formulations necessary to analyze the distortion of transient 

signals on isolated, as well as coupled transmission lines. Since 

planar printed circuits are inherently dispersive, i.e . the phase 

velocity is a function of frequency, the analysis of transient signal 

distortion on these lines begins with a frequency d omain approach. In 

order to consider the coupling between adjacent lines in a rigoro us 

manner, the even/odd mode formulation is then presented. Finally, thi s 

formulation is used to derive the appropriate equa tions for the 

propagation of finite t i me domain signals on dispersive and lossy 

symmetri c coupled transmission lines. 

3.1 The Frequency Domain Approach 

The analysis of the time dependent response of a transient signal 

may be formulated in either the time domain or the frequenc y domain. 

For a non-dispersive transmission line, it is easiest to analyze signal 

propagation in the time domain . On the other han d , if the 

transmission line is dispersive, then the analysi s in the time domain, 

while possible [14], i s much more difficult and time c o n s uming . The 
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simplest and most efficient method for examining pulse propagation on 

these types of structures is to consider the pul se in the frequency 

domain. 

The analysis of the system response begins by defining a Fourie r 

transform pair that relates the time domain response to the freque n c y 

domain spectrum. Using a time variable t and the corresponding 

transform variable w, the Fourier transform pair is defined as 

V{W,z) { } I 
T /2 , 

~ v{t,z) = v{t,z) e-JWt dt 
-T/2 

{3. 1) 

-1{"' } v{t , z) = ~ V {W, z) 
(II) 

1 I v"'< l e jwt dw 21l w,z 
- 00 

{3.2 ) 

where T is the total time over which the pulse exists. Since the 

signal exists only over a finite time period, its spectrum V{w,z) is 

continuous and exists from -oo < w < oo. 

The time domain response of a linear system to an input signal is 

equal to the convolution integral of the impulse response of the system 

and the input signal. If the input signal is v{t,z) and the impulse 

response of the system is h{t,z), then the system response, in time , is 

g iven by 
(II) 

y{t,z) =I h{-r,z) v{t--r,z) dT 
-00 

{3 .3 ) 

Since the convolution integral of two functions in the t i me domain is 

equivalent to multiplication o f their Fourier tran sforms in the 

frequency domain, {3. 3) can also be written as 

{ 3. 4) 

where Y{w,z), H{w,z), and V{w,z) are the Fourier transforms o f y(t,z), 

h{t ,z), and v{t,z), respectively. To find the system response in time, 
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the inverse transform of (3 .2 ) 
00 

is applied to both sides of (3.4) giving 

y (t, z) 
1 J V(w,z)H(W) 

27l 
-00 

ejwt dw (3. 5) 

The impulse response of a matched transmission line is simply a 

phase advance equal to the product of the complex propagation constant 

and the distance traveled, i.e. 

H (W, z) e 
-r (w) z 

z 
-[a (W)+jf3 (W))z z z 

e 

where r (W) is the complex propagation constant, a (w) is the 
z z 

(3. 6) 

attenuation constant, and f3 (W) is the phase constant. Using (3 .6) for 
z 

H(w,z) in (3.5), the response on a transmission line a t a timet and a 

position z to a signal v(t,z) can be written as 
0 

J 
oo -[a (w) +j/3 (w))z jwt 

1 rv Z Z 0 
V(w,z) e e dw 

21l 
-00 

or 

1 Joo rv y(t,z) =-- V(w,z) 
0 27l -oo 

-a (W) z j [wt-{3 (w) z J 
z 0 z 0 

e e dw 

(3. 7) 

(3. 8) 

The exponential containing a in the integrand causes the degradation 
z 

of the signal due to attenuation whereas the expone n tia l with f3 is 
z 

responsible for the phase advance. 

Dispersion distortion happens when f3 (w) is a nonlinear function 
z 

of frequency, i.e. the phase velocity is not constant with varying 

frequencies. The effect of dispersion distortion can be visualized by 

considering the pulse as a summation of many single frequency signals 

with different amplitudes , i .e. a Fourier series rep resentation. At 

the beginning of the transmission line, all the signals line up 

pro perly and add together to recreate the input signal. However, as 

the pulse travels down the line, each frequency component travels at a 
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slightly different speed, since the phase velocity is not the same for 

each frequency. Thus, each frequency component of the pulse arrives 

slightly shifted in time with respect to the other components. Since 

the frequency components do not add together as they did originally, 

the pulse shape is distorted. Although dispersion distortion does not 

change the amplitudes of the the individual frequency components, the 

amplitude of the distorted pulse will normally be less than the 

amplitude of the original pulse. In addition , the pulse spreads out in 

time since some frequency components arrive earlie r and some later than 

if they had all traveled the same speed. 

If a (w) is a constant with respect to frequency , then attenuation 
z 

will only reduce the amplitude of the signal and not distort it. On 

the other hand, when a (w) varies with frequency, t he n each fre quency 
z 

component is reduced by a different amount and it changes the 

reconstruction of the signal. However, unlike dispers i on distortion, 

attenuation in g e neral will not cause widening of the pulse, only a 

reduction in amplitude. 

3.2 Even/Odd Mode Formulation 

In 1956, J. Reed and H. Wheeler introduced a me thod for obtaining 

the response of a symmetric four-port network called the even/odd mode 

approach [25] . The even/odd mode approach, al so known as the symmetry 

approach , simplifies the analysis of a symmetric fo ur-port network by 

splitting it up into two simpler, two-port networks. Although this 

method of analysis appl ies only to symmetric networks, asymmetric 

networks can be analyzed in a similar fa s h ion [26). 
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The e ven/odd mode ana lys is begins by assuming that a signal of 

unit amplitude is applied to port one as in Fig. 3.1 , and the outputs 

are measured at ports two and three. It i s also assumed that ports two 

and three are perfectly matched, so that there are no re fl ections. The 

input signal is split up into two different signal s , an even mode and 

an odd mode as in Fig. 3.1. The even and odd mode signals are chosen 

such that they add together to produce a unit amplitude signal at port 

one and no signal at port f our, recreating the original signal. The 

even mode consists of two signals of one-half amplitude that are in 

phase and so they create a voltage maximum at every point along the 

line of symmetry. This is equivalent to an open circuit or a perfect 

magnetic conducto r separating the two lines . The odd mode, on the 

other hand, has two signals of one-half amplitude that are 180 degrees 

out of phase, and it produces a voltage minimum at every point alo ng 

the line of symmetry. This is equivalent to a short circuit or having 

the lines separated by a perfect electric conducto r. In general, the 

even and the odd mode s will have diffe rent phase velocities, 

attenuation constants, and characteristic impedanc es . 

Coupling distortion can best be understood by considering the 

response on both lines to be a linear combination o f four pulses , two 

on each line, as in Fig. 3 . 2. In general, the in phase pair (even ) and 

the out of phase pair (odd), will travel d own the line at two different 

speeds, due t o the differences in the phase veloci ties o f the e ven and 

odd modes. The even and odd modes pairs of pulses add constructively 

on the signal line and destructively on the sense line. To isolate the 

effects of e ven/odd mode dis tort ion, a hypothetical loss l ess and 
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dispersionless symmetric two conductor transmiss i on line is considered. 

A rectangular pulse is used for simplicity, and it is a s sume d that the 

odd mode phase velocity is higher than that of the even mode. 

When the signal first starts out, the even and odd pairs have not 

separated very much, and almost completely cancel each o ther on the 

sense line and reproduce the signal fairly accurately on the signal 

line, as shown in Fig . 3.2{b). As the signal travels farther, Fig. 

3.2{c), the even and odd pairs begin to separate. Now they d o not 

cancel completely on the sense line or reproduce the s i gnal v e ry well 

on the signal line; the result being distortion and crosstalk . The 

signal line response has also been widened and the leading and trailing 

edges have dropped off in amplitude. After the signal has traveled a 

very l ong distance, Fig. 3.2{d), the even and odd mode pairs separate 

completely, so that there are two pulses of one-half amplitude that are 

in phase on the signal line and two pulses of one-half amplitude that 

are 180 degrees out of phase on the sense line. 

In Fig . 3.2{b)-{d), the leading response of the sense l i ne is 

negative , because it was assumed that the odd mod e had a higher pha se 

velocity than the even mode . If this is not the case, then the leading 

response on the sense line is positive, because t he even mode will 

arrive before the odd mode . In addition, as the distance increases, 

the amplitude of the response on both lines will tend t o approach 

one-half of the value of the response on a single, isolated line. 

Since pulse spreading is due to the difference in the phase velocities, 



the total pulse spread, in time, due to only even/odd distortion at a 

distance z, can be written as 

t 
s 

z 
v 

e 

z 
v 

0 

where v and v are the even and odd mode phase velocities, 
e o 

(3.9) 

respectively. Since the phase velocities are related to the effective 

dielectric constants, (3.9) can also be written as 

t 
s ~ jvc-- - vc--j c re ro 

(3 . 10) 

where c and c are the effective dielectric constants for the even 
re ro 
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and odd modes, respectively, and c is the speed of light in free space . 

Note that distortion due to coupling may be present even if the lines 

are dispersive and lossy as well, since each of the three distort ion 

mechanisms, dispersion, l osses , and coupling , are independent of each 

other. If the transmission line is l ossy and dispersive , then the 

analysis is the same , except that the even and odd mode pairs suffer 

distortion due to dispersion and losses as they travel down the line , 

increasing the pulse spread and reducing further the amplitude of the 

signal. 

3.3 Symmetric Coupled Transmissi on Lines 

In this section, the even/odd mode formulation is appl ied wi th the 

frequency domain approach to determine the response on symme tric 

coupl ed lines. To compute the response on both l ines due to an input 

signal on only one line, the input signal is split into the even and 

odd mode components. The response on both lines due to each mode is 

then obtained as a function of time or di stance f or a specific distance 
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or time respectively . These responses are then added together t o 

obtain the total response on both lines at a particul a r t ime o r 

distance . 

Using this approach, the response on b oth lines due to a signal on 

the first line, the signal line, with no exc itation on the second line , 

the sense line, can be written using the superposition o f t he even a nd 

odd mode responses as 

v (t,z) 
1 

[ve(t,z) v
0

(t, z )] (3. 11a) - + 
1 2 

v (t, z) 
1 

[ve( t ,z) v
0

(t ,z)] (3 .11b) - -
2 2 

where v (t,z) and v (t,z) are the respo nse s of t he e ven and odd mode s , 
e o 

respectively, to the input signal and v (t,z) and v (t,z) a r e the 
1 2 

v o ltages on lines one and two at a timet and p osition z. Usi ng (3 . 8) , 

the even and odd mode responses can be written a s 

00 -'¥ (w)z jwt 
v (t, z) 

1 I V(w,z) 
ze 

dw (3 .1 2a) 
2n 

e e 
e 

-00 

00 -'K'zo (W) Z jwt 
1 I V (w, z) v (t, z) 

2n 
e e dw (3 .1 2a ) 

0 
-00 

where '¥ (w) and '¥ (w) are the frequenc y dependent complex propagation 
ze zo 

c onstants f o r the even and odd modes respectively . Substituting t hese 

two equations into (3 . 11a) and (3.11b) yields 

1 ® [ -· z 
jwt -'¥ z jwtl rv ze z o 

v (t, z) I_oo V(w,z) e e + e e dw 
1 4n 

(3 . 13a) 

1 ® [ -· z 
jwt -'¥ z jwtl rv ze zo 

v
2
(t,z) 

4n I_oo V(w,z) e e - e e dw (3 .1 3a) 
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jwt 
Factoring out e e 

-z[r +r 1/2 ze zo 

oo jwt 

2~ J V (w, z) e 

in (3.13a) and (3.13b) leads t o 

-z[r +r 1/2 ze zo 
e v (t, z) 

1 

v (t,z) 
2 

X 

-()() 

1 

[ 

z £ r -r 1 1 2 zo ze 
- e + 
2 

-z £r -r 1 /2] zo ze 
e 

lJ()()"' 
2

Tr V(w,z) e 
-()() 

jwt 
e 
-z[r +r 1/2 ze zo 

X 

dw 

1 

[ 

z £r -r 1 /2 zo ze 
2 e -

e zo ze dw -z[r -r 1/2] 

(3.14a) 

(3 .14b) 

These equations can be simplified further by recognizing that the terms 

in the parenthesis in (3.14a) and (3.14b) are the hyperbolic cosine and 

sine functions, respectively. Using this identity, (3.14a) and (3.14b) 

can be expressed as 

1 
v (t,z) = -

2 1 Tr J
()() 

-()() 

V (w, z) 

1J()()"' 
2

Tr V (w, z) 
-()() 

ze zo h zo ze d jwt-z £r +r 1 /2 [ r -r ] 
e cos z 

2 
w (3 .15a) 

ze zo . h zo ze d jwt-z £r +r 1 /2 [ r -r l 
e s~n z 

2 
w (3 .15a) 

Equations (3.15a ) and (3.15b) may be used to compute the pulse 

distortion on coupled, lossy, and dispersive transmission lines by 

evaluating the integrals either in closed form or numerically. 

However, in their present form these formulas do not give much ins ight 

into the mechanisms of distortion due to coupling, l osses , o r 

dispersion. In order t o gain an understanding of these coupling 

mechan i s ms, equations (3 .15a-b) need to be simplified to separate out 

each of the three mechanisms . 

The first step is to expand each term in the integrands into real 

and imaginary parts. While many signals of interest are symmetric 
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about some specific time and thus have a completely rea l Fourier 

transform, many useful signals are asymmetric with respec t to time, and 

therefore their Fourier transforms are complex. The rea l part V(w,z) 

is designated as V and the imaginary part as V,. In addition, to 
r ~ 

simplify the notation, the following substitutions are made 

Re [ 
rzo -rze ] 

a -a 
/j,a 

zo ze 
(3 .16a) 

2 2 

/j,(3 = Im[ 
rzo -rze ] {3zo -{3ze 

(3' 16b) = 
2 2 

Re [ 
rzo +rze ] 

a +a 
zo ze 

(3 . 16c) a 
2 2 av 

{3 = Im[ 
rzo+rze ] (3zo +(3ze 

(3.16d) = 
av 2 2 

Using these replacements, the integrands of (3.15a) and (3.15b) can be 

rewritten as 

I l V( w, z) e ze zo cosh z zo2 ze 
jwt-z ['¥ +r J /2 [ r -r l 

I 
2 

] 
-a z j [wt-(3 z] [ ] 

[
"' "' av av = Vr + j Vi e e cosh z(/j,a + j {j,~) 

"' ze zo , zo ze jwt-z[r +r J /2 [ r -r ] 
V(w,z)e s~nh z 

2 

["' ' = vr + J 
"'] -aav z j[wt-(3avz] , [ . ] 
Vi e e s~nh z(/j,a + J/j,~) 

(3.17a) 

(3.17b) 

Next the complex exponential in (3.17a-b) is expanded into cosine and 

sine terms giving 

I 
1 

= e 
-a z 

av 
+ j v.J [cos (wt-(3 z) 

~ av 

cosh[z(/j,a + jfj,(3)] 

+ j sin(wt-~ z)] 
av 

X 

(3 .1 8a) 



I 
2 

e -o::avzo [v + j v.J [cos (wt-~ z) 
r 1 av 

sinh [ z (l1o:: + jl1(3)] 

+ j sin(wt-(3 z)] av 
X 
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(3.18b) 

The hyperbolic sine and cosine can also be expanded into real and 

imaginary parts with the following formulas 

sinh (9+jlf>) sinh(B)cos(l/>) + j cosh(S)sin(l/>) 

cosh (B+jl/>) cosh(B)cos(l/>) + j sinh(S)sin(l/>) 

Using these formulas in (3.18a-b) leads to 

I 
1 

I 
2 

-o:: z 
e av [v + j v.] [cos (wt-(3 z) + j sin (wt-(3 z)] 

r 1 av av 

[ cosh(l1o::z ) cos (l1(3z) + j sinh(l1o::z) sin(l1(3z)] 

-o::av z ["' . "' ] [ a . . (3 ] e v + J V, cos (wt-,., z) + J s1n (wt- z) 
r 1 av av 

[sinh(l1o::z) cos(l1{3z) + j cosh(l1o::z) sin(l1(3z )] 

(3.19a) 

( 3 . 19b) 

X 

(3. 20a) 

X 

(3. 20b) 

Finally, the multiplications in (3.20a) and (3.20b) are carried out and 

the results are separated into real and imaginary parts. The real part 

of the first integrand is 

Re(I) = e av V cos(wt-(3 z) cos(l1(3z) cosh(l1o::z) -o:: z { [ 
1 r av 

- sin(wt-{3 z) sin(l1{3z) sinh(l1o::z)] 
av 

- V, [s in(wt-{3 z) cos( l1(3z) cosh(l1o::z) 
1 av 

+ cos(wt -(3avz) sin (l1(3 z) sinh(l1o::z)]} (3. 2la ) 



and its imaginary part is 

Im(I) = e av V sin(wt-~ z) cos(~~z) cosh(~az) -a z { [ 
1 r av 

Similarl y , the 

Re (I ) 
2 

= e 

+ cos (wt-~ z ) sin(~~z) sinh(~az) ] 
av 

+ v. [cos(wt-~ z) cos(~~z) cosh(~az ) 
~ av 

- sin(wt-~avz) sin(~~z) sinh(~az) ]} 

real part of the second integrand is fou nd to be 

-a z 
av {v [cos(wt-~ z) cos(~~z) sinh (~az) 

r av 

- sin(wt-~ z) 
av 

sin (~~z) cos h (~az) ] 

- v. [sin(wt-~ z) 
~ av 

cos (~~z} sinh(~az) 

+ cos (wt-~ z} 
av 

sin(~~z) cosh (~az) ]} 

and its imaginary part is 

-a z 
Im (I ) av {v [sin (wt-~ z) cos(~~z) sinh (~az ) = e 

2 r av 

+ cos (wt-~ z} 
av 

sin(~~z) cosh(~az)] 

+ v. [ cos (wt-~ z) 
~ av 

cos (~~z ) sinh (~az) 

- sin(wt-~ z) 
av 

sin(~~z) cos h (~az) ]} 
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(3.21b) 

(3 . 21c) 

( 3 . 2 1d) 

For real time signal s , the real part of the Fourier transfo rm, 
~ 

V 1 
r 

is an even function of w, and the imaginary part, V,, i s an odd 
~ 

function of w [51). In addition , while ~ (w) is an odd function of w, 
z 

a (w) is an even function of w. This can be shown by considering the 
z 

phase propagation equat ion for both positive and negative frequencies . 



For positive freque nc ies, the phase accumulation o f a propagating wave 

is 

¢(w) = e 
jwt-r (w)z 

z 
-a (w)z j [wt-~ (w)z] 

z z 
e e 

and for negative frequencies, 

-jwt-r (-w)z z 
¢(-w) = e 

-a (-w)z -j[wt+~ (-w)z ] z z 
e e 

(3.22) 

(3.23) 

In order to satisfy the outward radiation condition, the magnitude o f 
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the signal cannot increase with increasing distance , and so a (-w) must 
z 

be equal to a (w). Similarly, in order for phase to advance as 
z 

distance or t ime increases then ~ (-w) must be equal t o -~ (w) . Thus 
z z 

a (W) is an even function o f frequency and ~ (w) is an odd function. z z 

Note that the imaginary part o f the integrands in (3 . 21b) and 

(3.21d) are odd functions o f wand that the integrals i n (3 .1 5a) and 

(3. 15b) are ove r symmetric int erval, from minus infi nity to plus 

infinity. Since t he integral of an odd fun c tion ove r a symmetric 

interval is zero, the imaginary components of the integrand do n ot 

contribute to the voltage responses a nd can be ignored. On the other 

ha nd, the real part of the integrands, (3. 21a) and (3.21c), are even 

functions of w, and so t he integration from minus infinity to p l us 

infinity will be simply twice the integration from zero to either plus 

or minus infinity. This i s t he anticipated res ul t, since if rea l time 

signal i s input t o a real system, then the output s hould be a rea l 

fun c tion as well. Eliminating the imagin a ry parts , the two integrands 

become 
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-a z 
I 

av 
{v [cos (wt-~ z) cos (t:.~z) cosh(t:.az) = e 

1 r av 

- sin (wt-~ z) 
av 

sin (t:.~z) sinh (t:.az) ] 

- v.[sin(wt-~ z) 
l. av 

cos (t:.~z) cosh (t:.az ) 

+ cos (Wt-~ z) 
av 

sin (t:.~z) sinh (t:.az)]} (3. 24a) 

-a z 
av 

{v [cos (wt-/3 z) cos (t:.~z) sinh (t:.az) I = e 
2 r av 

- sin (wt-/3 z) 
av 

sin(t:.(3z) cosh(t:.o:z) ] 

- V, [sin(wt-/3 z) 
l. av 

cos (l:./3z) sinh (t:.az) 

+ cos (Wt-(3 z) 
a v 

s i n (t:.{3z) cosh (t:.az) J} (3 . 24b) 

Equations (3 .24a) and (3 .24b) are the most general forms of the 

integrands i n (3 . 15a) and (3.15b). The sine and cosine t erms with /3 
av 

represent the propagation of the signals at an average phase veloci ty , 

while the l:./3 sine and cosine terms account f o r the distortion of the 

signal due to even/odd mode coupling. Similarly, the s ignals can be 

thought of as having and average attenuation value of a , due to the 
av 

r eal exponential, while attenuation coupling between the lines is due 

to the hyperbolic sine and cosine terms with t:.a argume nts. 

Having obtained these formulas , some special cases may be 

considered . If the attenuation c onstants are the same for eac h mode, 

then t:.a = 0 and a 
av 

a . This reduces (3 . 21a-b) to 
z 

I = e z cos(t:.{3z) V cos(wt-/3 z) - V, sin(wt-/3 z) -a z { } 
1 r av l. av 

I 
2 

- e 
-a z 

z 
sin(t:.{3z) {v s in(wt-(3 z) + v.cos(wt-(3 z)} r av l. av 

(3.22a ) 

(3. 22b) 
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In this case, the signals on both lines are attenuated equally, but 

there is coupling due to ~~ and dispersion if ~ and ~ are functions 
ze zo 

of frequency. 

If, in addition, the propagation constants f o r the eve n and odd 

modes are equal, i . e. ~~ = 0 and ~ = ~ , then there is n o res p o nse on 
av z 

the sense line, 
-ex z 

I 
1 

= e 
z 

and the signal 

{V COS (Wt-~ z) 
r z 

line response is given as 

- V,sin (wt-~ z)} 
~ z 

This is the familiar result for pulse propagation on a single, 

isolated, lossy transmission line [40], [41], [44], [46]. 

(3.23) 

However, if the attenuation constants for the eve n and odd modes 

are different but the propagation constants are the s ame , then the 

voltages on the two lines can be expressed as 

I 
1 

I 
2 

= e 
-ex z 

av cosh(~exz) {v cos(wt-~ z) 
r av 

V.sin(wt-~ z)} 
~ av 

-ex z { } av "' "' e sinh(~exz) V cos(wt-~ z) - V,sin(wt-~ z) 
r av ~ av 

Expanding the hyperbolic sine and cosine into exponentials and 

(3.22a) 

(3.22b) 

multiplying the result with the exponential in fro nt o f (3.22a) and 

(3.22b) results in 

I 
1 

_
2
1 [ e-exzez + e-exzoz] [v cos(wt-(3 z) - V, sin(wt -~ z)] 

r av ~ av 

I 
2 [ 

-ex z 
1 ze 
2 e 

- exzo z] ["' ,.., . ] - e V cos(wt-(3 z) - ~ s1n(wt-~ z) 
r av ~ av 

Since the exponentials in (3.22b) are not equal, then I
2 

is 

(3 . 2 2a) 

(3 . 22b) 

non-zero and therefore there will be a response o n the sense line . Thus 

even if the phase velocities of the even and the odd mod e are the s ame , 

there still may be coupling due to differences in the attenuation 
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constants for the two modes. The response on the sense line has zero 

magnitude at z
0 

0 and is zero again as z -7 oo. The maximum respon se 
0 

on the sense line occurs when the deri vative with respec t to z o f the 

exponentials in the front of (3.22b) vanishes , i.e . 

d 
dz 

zo 
e [ 

-a z 
- e 

ze -a z] 
0 

Performing the indicated derivative, 
-a z -a z 

ze 
+ zo 

0 -a e a e = ze zo 
-a z -a z 

ze zo 
a e a e 

ze zo 

Both sides are multiplied by exp(a z)/a , giving 
zo ze 

e 
-a z+a z 

ze zo a 
zo 

a 
ze 

(3 . 23) 

(3.24) 

(3. 25) 

(3. 26) 

To remove the exponent i al, the natural logarithm is take n of both 

sides. 

-a z +a z = ln(a /a ) 
ze zo zo ze 

This equation can now be easily solved for z . 

z = 
ln(a /a) 

zo ze 
a -a 

zo ze 

(3. 27) 

(3 . 28) 

This is the position of the maximum response on the sense line due to 

attenuation coupling . Note that if the attenuation constants are a 

function of frequency, which is usual l y the case, then l ocatio n of the 

maximum sense line response is different for each frequenc y compone nt 

of the pulse. Thus it may not be possible to accurately predic t , us i ng 

(3 . 28) the actual location of the maximum sense line response due to 

attenuation coupling. 

Using Fourier transform theory and the even/odd mode approach , the 

equations for signal propagation on s ymmetric couple d, l ossy , and 
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dispersive transmission lines were derived. The Fourier transform 

provides a simple and straightforward way to represent the freque ncy 

dependent characteristics of both the transmission line and the signal , 

allowing quick computation of the time domain respons e of the system . 

The even/odd mode approach reduces the symmetric fou r-port s y stem by 

r epresenting it a s two simple two-port networks . Together, these two 

methods were used to derive equations that relate the d istortion 

mechanisms of dispersion, even/odd mode coupling, and attenuation 

coupling. 



CHAPTER 4 

RESULTS 

This chapter uses the formulations from chapters two and three to 

compute the frequency dependent parameters of complex microstrip 

structures and to analyze pulse distortion due to dispersion and 

coupling on these lines. Initially, a very simple structure is 

considered, the single layer open symmetric coupled microstrip. The 

effective dielectric constant is computed versus frequency for 

different substrate materials and strip spacings. Using this data , 

pulse distortion on these structures is considered for different 

lengths and spac i ngs. Next, the generalized Gree n's funct ion i s used 

to compute the effective dielectric constant of structures with 

multiple dielectric layers. Again results are presen ted for diffe rent 

spac ings, materials, and heights of the l ayers . Finally multilayer 

symmetric coupled microstrips are considered, partic ularly with respect 

to structures that exhibit low coupling due to the control of the 

electrical properties of the substrates and superstrates. 

4 . 1 Symmetric Coupled Mi crostrips 

Coupling between adjacent transmission lines is a very important 

consideration in circuit design, since it is a limiting factor in the 

overall size and operation speed of the circuit. However , due t o the 

wideband nature of finite time domain signals, no single parameter or 



rule of thumb can accurately take into account the ef f ects o f c o up ling 

on pulse propagation, especially for multilayer s tru c tures . For 

accurate results, the analysis needs to be carried o u t in a mo re 

rigorous manner, considering the distance the signa l trave ls a nd the 

entire spectrum of both the signal and the impulse r esp onse o f the 

network. 

This section considers open symmetric coupled mic r ostrip 

structures with a single dielectric substrate. While t hi s i s n ot a 

very complex structure, it is very useful in demo nst r a ting many of the 

principles of coupling and dispersion distortion . Fou r di f f erent 

dielectric substrates are used throughout this chapter as typical 

examples of some of the different types of materials that are us ed in 

production: 1) RT/duroid 5880, c = 2.2, 2) beryllium oxide , c = 6 .8, 
r r 

3) alumina, c = 9.7 , and 4) gallium arsenide, c = 12.2. To 
r r 

demonstrate distortion, a Gaussian pulse is used wh ich has t i me and 

frequency responses given by 

-ln {2) {t/-r) 
2 

v {t) Ae ~ V{W) 

2 
~ -{w-r/2 ) /ln{2) 

A-r ~~ e {4.1) 

where A is the amplitude of the pulse, -r is the v o l t age ha l f widt h-

half amplitude maximum, and the pulse is centered a b o ut t = 0 . 

The effective dielectric constant of the e v e n mode , c , a nd t he 
re 

odd mode, c , are plotted as a function of freque n c y i n Fi gs. 4.1 
ro 

through 4.8 for the four different substrate materials with six 
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different spacings . The even mode is s h own in Figs . 4.1, 4.3, 4.5, and 

4.7, while the odd mode is graphed in Figs . 4 . 2 , 4 .4, 4 . 6, a nd 4 . 8 . 

The smallest spacing, s = 0.6 mm is very close and would n o rmal l y be 
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used only when strong coupling between the lines is desired. The 

values for s 5.0 rnm, both even and odd mode, are very clos e to the 

values for s -7 oo, i.e. a single i solated microstrip, and so c ~ c 
re ro 

for this spacing. In microwave circuit design, the most common rule of 

thumb for designing uncoupled lines is to place them at least three 

center conductor widths or three substrate heights apart. For the 

substrate height and center conductor width of Figs. 4.1-4.8, this 

spacing is represented by the s = 1 .8 rnm graphs. The greatest 

difference in c and c for the single layer configuration occurs 
re ro 

when the spacing is the smallest. As the spacing increase s , c 
re 

decreases in value, c increases, and both asymptotically approach the 
ro 

value of ere££ for a single isolated microstrip. 

As can be seen from the derivation in Chapter 3, dispersion 

disto rtion is due to the change in the phase velocity with freque ncy. 

In particular, dispersion distortion of finite time domain signals is 

related to the differences in the inverse of the phase velocities over 

the band of frequencies of interest. Since the inverse of the phase 

ve l ocity is proportional to the square roo t of the effective dielectric 

constant, the amount of distortion due to dispersion is related to 

tjv'creff {£1) - v'creff {£2 ) I { 4 . 2) 

where e is the distance traveled down the line, and f and f are the 
1 2 

lower and upper frequencies that define the band of interest . Thus, 

the amount of dispersion that is acceptable depends on three fa ctors; 

1) how creff varies as a functi on of frequency, 2) the bandwidth of the 

system and signal, and 3) the distance the pulse must travel. The 

least dispersive structure of the four i s the RT/duroid 5880 substrate, 
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whose results are shown in Figs. 4.1 and 4.2 , since its effective 

dielectric constant changes very little, only about 0.23 from 0 to 125 

GHz. The beryllium oxide, Fig . 4.3 and 4.4, and alumina substrates , 

Fig. 4.5 and 4.6, are a little more dispersive than the duroid and the 

gallium arsenide is the most dispersive , showing a change in creff of 

about 3.8 from 0 to 125 GHz. 

While dispersion is an important consideration in the design o f 

MMIC's, the effects of coupling distortion and crosstalk also are a 

major concern. Since both coupling distortion and crosstalk are due to 

the difference in the even and odd mode phase velocities, the amount of 

pulse spread due to even/odd coupling is characteristic of the amount 

of pulse distortion due to coupling. From (3.24a-b) the amount of 

pulse spread due to differences in c and c can be writte n as 
re ro 

t (W) 
s i [vc (w) - vc (w)J c re ro 

where t (W) is the amount of pul se spread in time for a given 
s 

(4.3) 

frequency , tis the distance traveled, and c is the speed of light. 

Figs. 4.9 and 4.10 show c and c as a function of frequency for the 
re ro 

four different substrates. As the substrate dielectric constan t 

increases , the separation between c and c at a given frequency 
re ro 

increases as well . Thus the gallium arsenide substrate has a much 

tighter coupling between t he lines than the duroid for structures with 

identical dimensions. For the single layer microstrip, the largest 

difference in c and c occurs at low frequencies , in the quasi-TEM 
re ro 

region, although this is not the case for all structures, as will be 
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shown in section 4.3. As frequency increases, c and c approac h the 
re ro 

value of creff for the isolated microstrip. 

This behavior is characteristic of all coupled microstrip 

structures, even multilayer ones, because as frequency increases, t he 

electrical distance separating the coupled lines increases , decreasing 

the coupling and enhancing the isolation of the lines . So whi le 

dispersion is a high frequency concern, since it increases as the 

bandwidth of the signal increases, even/odd mode coupling is normally a 

low frequency phenomenon, decreasing as frequency increases . Therefore, 

even if the signal is narrowband and therefore would not experience 

significant dispersion distortion , even/odd mode distortion, however, 

may be an important factor in the design. 

Now that the frequency dependent effective dielectric constant has 

been computed for the structures , pulse distortion can be considered 

using the Fourier transform approach. Throughout this chapter f our 

different designations are used to refer to the time domain responses 

of the transmission lines; signal line, sense line, undistorted, and 

isolated. The undistorted designation refers to pulses that are 

propagated on a TEM, l ossless , uncoupled transmission line whose 

effective dielectric constant is invariant with respect to frequency 

and it is equal to the zero frequency value of the structure being 

considered, i.e. creff(w) = creff(O) for all w. The isolated response 

indicates that the pulse is sent down a dispersive, lossless , and 

uncoupled transmission line. The effective dielectric constant for 

this pulse is computed using the SDA with just a single center 



conductor whose width is the same as the width of either center 

conductor of the symmetric coupled lines. 
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When the signal is impressed on a coupled line, the r e are two time 

domain responses of interest, the response on the line whe r e the signal 

is impressed, called the signal line, and the response on the line 

coupled to it, referred to a s the sense line. The a moun t of d i s t o r tion 

due to dispersion is shown by the difference between the undistorted 

and the iso lated response. Distortion due to even/odd mode coupling is 

represented by the difference between the isolated line and the signal 

line waveforms, and the sense line response gives an indication of the 

amount of crosstalk present in the structure. 

The effects of dispersion distortion and even/odd mode coupling 

distortion on pulse propagation are shown i n Figs. 4.11 through 4 . 18 

for different distances and substrate materials. A Gaussian pulse wi th 

an amplitude of 5 and a ~ equal to 30 picoseconds i s used along with a 

spacing, center conductor width, and substrate height o f 0 . 6 mm. Since 

the pulse travels at different speeds on each substrate, the distances 

were scaled appropriately to have all the responses arrive at similar 

times and to more clearly illustrate the distortion mechanisms. Also, 

two distances were chosen for each pulse, in order to show how 

increasing distance affects b oth coupling and dispers i on distort i on. 

The first structure considered, shown in Figs . 4.11 and 4.12, uses 

RT/duroid as the substrate material. In spite of the large distance 

that the input signal has trave led, it shows very little distortion due 

t o dispersion. Eve n at 250 mm, the iso lated a nd undistorted responses 

agree very well. Even/odd mode distortion, on the other hand, has 



~ 
rn -:::1 
0. 

~ 

0 

~ 
"0 
:J 

.,J ._. 
c: 
b.[J 
(1j 
::; 

5.0 

2.15 

0 .0 

-2.5 

Signal line 
--------- Sense line 
······---··--·-··- Undistorted 
- --·-·--- Isolated 

.f .... ~ 
/i \ 

w s w 
1• •I• •t• • I 

0.45 

//\) \hi .,. ·\ c.. 

: \ r 

' a E: -r 
w = 

-......... ., 
' I 
',, 0.55 

' I 
' I 
', I 

\ I 
\ I 

\ I 

' " ,...,_, 

Time in nanoseconds 

h = 
s -

0.65 

2.2 
0.6mm 
0.6mm 
0.6mm 

0.75 

Fig. 4.11 . Pulse distortion on coupled lines, s = 0.6mm. 1 = 125mm, 

T = 30ps , RT/duroid 5880 substrate. 
-J 
1.0 



Q) 
VJ -:l 
0. 

c..... 
0 

Q) 

'"d 
:l 
+) ·-c 
tl1l 
<0 
~ 

5.0 

2 .5 

Signal l.ine .. --;~. 
Sense hne .-/ ··.\ 
Undistorted /i \\ 
Isolated !! ····\ 

: I ~ . 

=; ~\ 
!· \\ ./ .. 
:i ";\ 
:. \\ 

w s w t• .,. ..,. ., 

hi e, 

£ - 2 .2 
r 

0.6mm w = 

h - 0.6mm 
s - 0.6mm 

0 0 I ~ .- .. - I ' • ;;:., · I I ~ cnr· I I I il I I i "> ..... 5 I I I i i 1 1 

1.35 
- .... ,, I : 

', 1.05 : 
\ I 

\ I 

1.15 1.25 

' I \ I 
' I 
' I \ I 

\ I 
\ I 
\ I 

\ , ' , ' , '-~ 

-2.5 Time in nanoseconds 

Fig. 4.12. Pulse distortion on coupled lines, s = 0.6rnm, 1 = 250mm, 

1 = 30ps, RT/duroid 5880 substrate. 
co 
0 



Q) 
Ul -j 
~ 

116-4 

0 

Q) 

"d 
j 

..> ..... 
c: 
l:l1l 
~ 

~ 

5 .0 

2 .5 

0 .0 

-2.5 

Signal line 
Sense line 
Undistorted 
Isolated /l\ hT 

: i "; \ l ________ _ 
! i \ \ 

e 
r 

--
; i \ \ 
[.;-..... \ \ 

\ \ 
; . 

1\ \ 
I \\ 

/ \\ 
: ~ , ~ . , ~ 

: \ 
I ~ 
I • • • ....... 
, 

', , 
0.45'' ,, p.55 

' I ' , 
', I 

\ , 
\ , 

\ I 

' I \ I 
\ , 

.... , ' ... _ .... , 

Time in nanoseconds 

E; - 6 .8 
r 

0.6mm w -
h - 0.6mm 
s - 0.6mm 

0.65 0 .75 

Fig. 4.13. Pulse distortion on coupled lines, s = 0 .6mm, 1 = 75mm, 

1 = 30ps, beryllium oxide substrate. 
00 
1-' 



Q) 
tfl -:s 
~ 

c... 
0 

11) 

"d 
:s 
+) .... 
r::: 
~ 
llS 

::g 

5.0 

2.5 

Signal line 
Sense line 
Undistorted 
Isolated 

w s w 
I• • I• •t• •I ; ")~\ hi 

I : \ ---------------------~--; \ \ 
f i \ \ 
j i \ \ 

e 
r 

6.8 
j i ~ \ 
! i \ \ 
f i : \ 
:\i ·. 0 

E; -
r 

0 .6mm w -
h - 0.6mm 
s - 0.6mm 

I I J :1.:- --, 7 \ ~... .. . I -'\] I I I . I . I ,, I .... I I JL-,--""'_......-::::E:~-:=--·· r . : I 
¥-=::J. I 

0 
I - .... , 00 I 0. --- 1. ' 

\ I ' , , 
1.10 1.30 

-2.5 

' I \ I 
\ I 

\ I 
\ I 
\ I 
\ I 

\ I 

' I ' , ' ..... _, 

Time in nanoseconds 

Fig. 4.14. Pulse distortion on coupled lines, s = 0.6mm. 1 = 150mm, 

T = 30ps, beryllium oxide substrate. 
CD 
N 



Q) 

Ul -=' 
~ 

~ 

0 

Q) 

""d 
=' ...,; ·-c:: 
tl1l 
Cd 
~ 

5.0 

2.5 

0.0 

-2.5 

.... ··· .. 1('., w s w r. ..r. ..r. .r .- -.-
Signal line 
Sense line 
Undistorted 
Isolated 

! /\ \ 
! i \ \ 

! i \ \ 
! / \ \ 
; I \ \ 

hi __ e ,. 
--

~
ji \\ 

.: 
: 

:" ' 
f I . \ ~ 
• • I . • 

:"I : \ \ 
:I / '· \ 
/i : \\ 
i : .... \ 
• I • • 

I I \\ 

/ : \.. 
/_ .. · : \·· ..... . -~---~.:~-·- ' 

--,' I 
', I 

0.4'5, : 0 .55 
' I \ I 

\. I 
\ I 

\ I 
\ I 
\ I 

\ I 
\ I 

\ I ' , 
'-~ 

\ -, _ _...-

Time in nanoseconds 

e - 9.7 
r 

0.6mm w -
h - 0.6mm 
s - 0.6mm 

0.65 0.75 

Fig. 4 . 15. Pulse distortion on coupled lines, s = 0.6mm, 1 = 62.5mm, 

• = 30ps, alumina substrate . 

-- --- - -------

(X) 

w 



Q) 
Ill -:I 
~ 

~ 

0 

Q) 

"'d 
:I 

.:J ·-c 
tt() 
(1j 

~ 

5.0 

2.5 

0.0 

- 2.5 

.-·. S ignal line 
S ense line 
Undistorted 
Isolated 

... ··y-·-.... 
... /'· \ 
/ i \ \ 
! i \ \ 

.: i \ \ 
! i :. \ 
i i \ \ 
! / \ \ 
: / \ \ 
:\1 " ., . . . 

- -- .... ...,,, I ,' 

' I '._, 1.00 I 

' I 
' I 

' I 
' , I 

' I 
' I \ I 

' ' ' ' ' ' 
' I ', ,~ ,, __ ...... 

1. 10 

w s w 
I• •I• •I• •I 

hi £, 

e - 9 .7 
r 

0 .6mm w -
h - 0.6mrn 
s - 0 .6mm 

1.30 

Time in nanoseconds 

Fig . 4.16. Pulse distortion on coupled lines, s = 0.6mm, 1 = 125mm, 

T = 30ps, alumina substrate. 
<X> 

""' 



Q) 
rJ) -=' 0. 

4-1 

0 

Q) 

"'d 
;::j 

...,J ..... 
~ 
~ 
~ 

::s 

5.0 

2.6 

0.0 

-2.5 

Signal line 
Sense line 
Undistorted 
Isolated 

w s w 
I• •I• •I• •I .... /·:;:·\"\ 1 ~ 

/!\\ h ,. : I :_ \ 
! I \ \ 
/ i \ \ 

j i : \ 
:~ \ \ 

I 
I -- I ', I 

0.~ : 
', I 

\ I 

' J 
' I 
', I 

' I ' ~ ', ~ ... __ 

\ i .... , ., ' I • • \ 
I :_ \ \ 

I . • ~ 
I :_ \ 

I ~ • 
I •• \ 

I ·• . : \ \ 
: \\ 
I .... , 

: \ 
: ·:·· ..... I 

0.50 

Time in nanoseconds 

£ - 12.2 
r 

0.6mm w -
h = 0 .6mm 
s - 0.6mm 

0.60 0.70 

Fig. 4.17. Pulse distortion on coupled lines, s = 0.6mm, 1 = 50mm, 

-r = 30ps, gallium arsenide substrate. 
o:> 
(J1 



~ 
rn -j 

5 .0 

~ 2 .5 

Cj,f 

0 

~ 
"d 
j 
~ ·-c 
ttO 
ctl 

::g 

0.0 

-2.5 

Signal line 
--------- Sense line 
·················· Undistorted 
-·-·-·- ·- Isolated 

--, ' I 
', I 

',, 0.88 : 
' I 

' I 
', I 

' I 
' I 

' I 
' I 

' I 
', I 

' I ' , ' , ' ; '-~ 

w s w 
I• •I• •I• •I 

1 e, 

E: - 12.2 
r 

0.6mm w = 
h - 0.6mm 
s - 0.6mm 

0.98 1.18 

Time in nanoseconds 

Fig. 4.18. Pulse distortion on coupled lines, s = 0.6mm. 1 = lOOmm, 

T = 30ps, gallium arsenide substrate. 
co 

"' 



87 

significantly degraded the signal line response at just 12 5 mm, and 

shows a large response on the sense line as well. At 250 mm the signal 

has become almost unrecognizable and the sense line respo nse has ri sen 

to almost the same amplitude as the signal line. 

As the relative dielectric constant of the substrate inc reases, 

changing from 2 . 2 to 6.8 and 9.7, the effects of dispersion become more 

pronounced due to the 9reater change in the phase velocity with 

frequency for these structures. The beryllium oxide substrate, Figs. 

4.13 and 4.14, has slightly more distortion due to dispersio n, 

particularly at 1 = 150 mm, and even/odd mode distortion affects the 

pulse even more than the duroid structure did. At 150 mm, the signal 

line response begins to look like two separate in phase pulses and the 

sense line like two pulses, 180 degrees out of phase . Also, like all 

the pul se response graphs in this section, the leading response on the 

sense line is negative, indicating that the odd mode leads t he even 

mode. In other words, the odd mode phase velocity is greater than the 

even mode and hence c > c 
re ro 

This is characteristic of all single 

layer microstrip structures, but as will be shown in section 4.2, it is 

not necessarily t rue for multilayer structures. The structure with 

alumina substrate, Figs. 4.15 and 4.16, has results very similar to the 

beryllium oxide, except that the distances have dec reased from 75 and 

150 mm to 62 . 5 and 125 mm and the distortion of the pulses has 

increased slightly. 

The gallium arsenide structure , as anticipated, ha s the greatest 

dispersion and coupling distort i on of the f our substrate ma t erials. In 

spite of having scaled the distances down to 50 and 100 mm, there is 
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still significant distortion, both from coupling a nd d ispersion. At 

SOrom, dispersion has shifte d the pulse in time, slowing it down 

slightly, a s well as widening it. Coupling had reduced the signal l i ne 

to 70 percent of the original amplitude and has a sense line response 

that is almos t 50 percent of the undistorted pul se. By 100 mm, both 

the signal and sense line responses have separated almost completely 

into the even and odd mode pulses . Unlike the other substrat es, 

dispersion adds significant disto rtion t o the pulse, reduci ng the 

amplitude by ten perc ent and significantly increasing the pu l se width. 

The effect of center conductor spacing on the transient response 

of the coupled transmission lines is as i mportant as the distance 

consid e ratio ns. Figures 4 .19 thro ugh 4.26 show the effect s o f 

d i fferent line spacings on pulse disto rtion for the f o u r different 

substrates. The signal line responses are given in Figs. 4 .1 9 , 4.21, 

4.23, and 4.25 with the corresponding sense line values in Figs. 4 .20 , 

4.22, 4.24, and 4. 26. The isolated respo nse , i. e. s = oo, is not 

included, but i s c l osely approximated by the s = 5 rom response o n the 

signal line and by a zero response on the sense l i ne. 

As before , the st ruc ture with RT/duroid substrate , with r esults 

shown in Figs . 4.19 and 4.20, is n ot signif i cantly affected by the 

dispersive effects of the line, but is highly susceptible to coupl ing 

di stortion. At the smallest spacing, s = 0.6 rom, t he s i gnal l i n e 

amplitude has de c reased by one-half and the sense line has r i sen to the 

same magnitude as the signal line. As the spacin g inc r eases , the 

a mplitude o n the s ignal l ine increases a n d the sense line dec reases . 

When s 1.8 mm, the signal line r esponse has bee n degrade d by only 1 0 



Q) 
rn -:I 
0. 

C6-4 

0 

Q) 

"'d 
:I 
.,J ·-c 
!lO 
ro 

::s 

5.0 -, 

2.5 

0.0 

-2.5 

s -
--------- s -
...................... s -
- ·- ·- -- -- s -
----··---- s -
------ s -

Signal line 
0.6mm ,-.... 
1.2mm t"""·\\ 
l.Bmm f·-·\\ 
2.5mm ,~.-······ .... , 3.5mm . .....-~ 
5.0mm 

1.03 1.13 

response 
w s w 

t• •f• •t• •I 

hi E, 

£ = 2.2 
r 

w = 0.6mm 
h = 0.6mm 

1.23 1.33 

Time in nanoseconds 

Fig. 4.19. Pulse distortion on coupled lines vs. spacing , signal line response 

1 = 250mrn, 1 = 30ps, RT / duroid 5880 substrate. 
00 
1.0 



Q) 
rn -j 
~ 

~ 

0 

Q) 

"0 
:j 

..,) 

. ....... 
c 
tll) 
(1j 

~ 

5 .0 -, 

2.5 

0.0 

-2.5 

s -
--------- s -
·····- ···········- s -
--------- s -
---------- s -
------ s -

Sense line 
0.6mm 
1.2mm 
1.8mm 
2.5mm 
3.5mm 
5.0mm 

response 
w s w 

I• •I• •I• •I 

, e, 

£ = 2 .2 
r 

w = 0.6mm 
h = 0.6mm 

1.33 

Time in nanoseconds 

Fig. 4.20. Pulse distortion on coupled lines vs. spacing, sense line response 

1 = 250mm, T = 30ps, RT/duroid 5880 substrate. 
\0 
0 



Signal line response 
5.0 -. s - 0 .6mm 

--------- s - 1.2mm 
...................... s - 1.8mm 

2.5mm :;· \\ hi £ -·-·-·- ·- s - J _ ............. _, r 
-··-··-··- s - 3.5mm 

Q) 

2.5 ~ 
------ s -

5.0rnrn ~····· ... ·· ... '\ £ - 6.8 rn r - w = 0.6mm :j 
' · ', ·. :\ 0.. /N ',\ ····-... :_~ h = 0.6mm 

' . ' 
~ 

0 

Q) 

-o 
j 

.,..J ..... 
c 0.0 
tl1l -1 1.00 1.10 '\.··---:' T~ 1.30 ('(j 

~ 

-2.5 Time in nanoseconds 

Fig. 4.21. Pulse distortion on coupled lines vs. spacing, signal line response 

1 = 150mm, 1 = 30ps, beryllium oxide substrate. 
\0 
~ 



Q) 
rn __. 
:::3 
0.. 

~ 

0 

Q) 

"'d 
j 

..._) 
·.-4 

~ 
tlD 
~ 
~ 

5.0 

2.5 

0.0 

-2.5 

s -
s -
s -
s -
s -
s -

Sense line 
0.6mm 
1.2mm 
1.8mm 
2.5mm 
3.5mm 
5.0mm 

response 
w s w 

I• •I• •I• •t 

i e, 

£ = 6.8 
r 

w = 0.6mm 
- 0 .6mm 

1.30 

Time in nanoseconds 

Fig. 4.22. Pulse distortion on coupled lines vs. spacing, sense line response 

1 = 150mm., T = 30ps. beryllium oxide substrate. 
1.0 
1\.) 



~ 
['/) -:::3 
a. 
~ 

0 

~ 
"d 
;:j 

4J ·-c: 
i.ll) 
«S 
~ 

5.0 

2.5 

0.0 

-2.5 

Signal line response 
s = 0.6mm 

--------- s = 1. 2mm 
·················· s = 1 Bmm ;.":::.'\ . .· ,, 
- -- ·-·-·- s = 2 . 5mm !/ ·-\ 

I .-·, -.:_, 
-··-··- ··- s = 3.5mm / ·, ·\ 
------ s = 5.0mm ~'I \\ 

hi Er 

... ············ .... '-,\ 
,~<.~:· ',,\\ ········ ... \ 

,,' ...... . ',, ·· ... 
/ ... /. ' , ~ . ' , ... /. ', , ··t ' , .•· /. ~-, . . 

,' /// , .·· /.·" 
,/ .··:/~., 

,..<~.? 
-~~ 

1.00 1.10 

Time in nanoseconds 

e = 9.7 
r 

w = 0.6mm 
h = 0.6mm 

1.30 

Fig. 4.23. Pulse distortion on coupled lines vs. spacing, signal line response 

1 = 125mm, T = 30ps, alumina substrate. 
\0 
w 



Q) 
fll -=' 0.. 

~ 

0 

Q) 

"'0 
=' .,J 

........ 
c 
tlll 
~ 

::g 

5 .0 ..., 

2.5 

0.0 

-2.5 

s -
--------- s -
.......... ........ ....... s -
- -----·-·- s -
- --------- s -
------ s -

Sense 
0.6mm 
1.2mm 
l.Bmm 
2.5mm 
3 .5mm 
5 .0mm 

line response 

.. -···-. 
,i.,-.... \. ., ..... 

~ '(. 

/:" ;-· 
,'/ / 
// i 

I . 

1.10 

w s w 
I• •I• •I• •I 

hi £, 

£ = 9.7 
r 

w = 0.6mm 
h = 0.6mm 

1.30 

Time in nanoseconds 

Fig. 4 .24. Pulse distortion on coupled lines vs. spacing , sense line response 

1 = 125mm, T = 30ps, alumina substrate. 
0.0 
.::. 



Q) 
rn .... 
~ 
~ 

"""' 0 

Q) 

"'d 
:l 
~ ....... 
~ 
t:lLl 
~ 

~ 

5.0 

2 .5 

Signal line response 
s = 0.6mm 

--------- s = 1 . 2mm 
·················· s = l.Brnm /.:;.:'-\ 
-·-·-·-·- s = 2.5mm .v.,. ...... \ 
-··-··-··- s = 3 .5mm /> \\ 
______ s = 5.0mmf·~······· ·.. \\ 

.· ··.. \\ 
' ·· ... \~ , .. .... . . 

/\
,~.... ',,, ....... \ 

,' ', · .. , \. ·. , . ' . , .· ' j, 
I, .··i. ', __ ., 

/ .··/;'/ 
,/7.··~·'/ , . . 

" ... /. / .. ·;....-; 
/._,.-::'#7 

hi e, 

£ = 12.2 
r 

w = 0.6mm 
h = 0.6mm 

~~ ., . \ ~~ 0.0 I 1 1 1 1 1 • ' ; r \ . i. _, ~e Jl • • • • 

0 .90 1.20 

-2.5 Time in nanoseconds 

Fig. 4.25. Pulse distortion on coupled lines vs. spacing, signal line response 

1 = lOOmm, -r = 30ps, gallium arsenide substrate. 
I.D 
VI 



Q) 
rn -;j 
~ 

"-4 

0 

Q) 

"0 
;j 

...,; ....... 
c:: 
~ 
ro 
~ 

5.0....., 

2.5 

0.0 

-2.5 

s -
--------- s -
.................... s -
-·-·----- s -
- ··-··-··- s -
------ s -

Sense line 
0 .6mm 
1.2mm 
1.8mm 
2.5mm 
3 .5mm 
5.0mm 

response 
w s w 

I• •I• •I• ·~ 

hi er 

£ = 12.2 
r 

w = 0.6mm 
h = 0.6mm 

1.20 

Time in nanoseconds 

Fig. 4.26. Pulse distortion on coupled lines vs. spacing, sense line response 

1 = 100mm, T = 30ps, gallium arsenide substrate. 
\D 

"" 



percent, but the sense line is up to 35 percent of the initial 

amplitude of the input pulse. Depending on the system speci fi cation, 

thi s may be too large of a spurious signal, even though this spacing 

satisfies the normal design criteria. 
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Increasing the substrate relative dielectric constant to 6.8 , 

Figs. 4 . 21 and 4.22, and 9.7 , Figs. 4.23 and 4.24, increases dispersion 

and coupling distortion even as the distance traveled decreases. At 

the smaller spacings, s = 0.6 mm and s = 1.2 mm, the tighter coupling 

on this structure causes both the signal and sense line responses to 

separate into the even and odd mode pulses, i .e. two pulses in phase on 

the signal line, and two pulses 180 degrees out of phase on the sense 

line. Due to the distortion of the pulse from dispersion, the maximum 

positive sense line response, which is greater than one-half of the 

amplitude of the undistorted signal , occurs when the spacing is 1.8 mm 

and is slightly less for the smaller spacings. Normally, it is 

expected that the sense line amplitude would not exceed one-half of the 

input signal because , as shown in section 3 . 2 , the magnitude of both 

the signal and sense line responses tend to approach one-half the 

original amplitude as the even and odd mode pulses separate completely. 

The larger response on the sense line is a result of the increased 

dispersive characteristics of the line due to the higher relative 

dielectric constant. This can be visualized by approximating the 

distortion due to coupling, as in Fig . 3 . 2 , as being a result only of 

the separation of the even and odd mode pulse pairs over di s tance due 

to differences in the modal phase vel ocity. To include the effects of 

dispersion, the undistorted pu l se pairs in Fig. 3.2 are replaced with 
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one-half of the isolated line's respo nse. This i s only approx ima te , 

because the difference in the modal phase velocity i s a fun c t ion of 

frequency, and therefore affects each frequency c omponent o f the pulse 

differently and also because the dispersive characteri stics of the even 

and odd modes , while b e ing very similar, are not quite exac t ly the 

same. 

In Figs . 4 .21 and 4.23, the isolated line response is 

approximately the same as the s = S.Omm g r aphs. I n both graphs , either 

c = 6.8 or c = 9.7 , the isolated pulse has a relatively l a rge 
r r 

n e gative swing o n the trailing edge due to the dispers i on distortion. 

Since the sense line response is equal t o the e ven mode response minu s 

the odd mode response (eq. 3.lla) , and because the odd mode leads the 

even mode, the trailing negative swing of the odd mode pulse adds 

constructively to the even mode pulse. This constructive interference 

increases the sense line response so that it is larger t han one-half o f 

the input signal. Therefore the maximum possible sense line response, 

for a given spacing, wo uld occur when the maximum of the negative s wing 

of the odd mode pulse aligns with the positive maximum of the even mode 

pulse . Since the odd mode leads the even mode in this struc ture , there 

is n o possibility of constructive interfer ence in the sense line's 

negative leading response, and so it attains a maximum when the line 

spacing is a minimum. Thus in order to obtain accurate predictions o f 

the signal and sense line responses, the dispersive characte ristics o f 

the line, as well as the pulse spectrum mu s t b e a ccounted for in a 

rigorous manner, such as the Fourier tran s f o rm approach us e d in this 

report. 



When the relative dielectric constant of the substrate i s 

increased to 12.2, Figs. 4.25 and 4.26, both dispersion and coupling 

have a significant effect on the distortion of the pulse. The signal 

and sense line responses on the gallium arsenide s ubst rate are very 

similar to the corresponding pulse shapes for the beryl lium oxide and 

alumina substrates , except that the pulses on the gallium arsen i de 

structure are affected significantly more by dispe rsion. 
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The s = 5.0 mm graph, in which dispersion dis tort i on is the 

dominant mechanism, shows a 12 percent reduction in the maximum 

amplitude on the signal line . In addition, the magnitude of the 

negative trailing swing of the signal line has risen to over 20 percent 

of the undistorted amplitude. Like the previous two substrate 

materials, the maximum positive sense line response does not occu r when 

the spacing is the smallest but instead happens fo r s = 1 . 2 mm or 

1.8 mm. 

When s = 1.8 mm, the signal line response has degraded to 65 

percent of the initial amplitude and the sense line r esponse has risen 

to a maximum magnitude of 50 percent of the undistorted value. For 

most circuits , these would be unacceptable values f o r coupling loss a nd 

the amount of crosstalk, even though this spacing is within the three 

widths/heights rule of thumb . At a s maller di stanc e, t he amount o f 

coupling will not b e as great, but clearly, the allowable p r oximi ty of 

the transmission lines for uncoupled op e ration depends not o nly on the 

spacing of the center conductors, but also the substrate materials, 

structural dimensions, and the distance over which the l ines are 

coupled to each other . In general, for single layer microst rips, 



relatively short distances and/or small dielectric constants allow 

smaller spacings while longer distances and/or l arger dielectric 

constants require larger spacings. 

10 0 

Using the Spectral Domain Approach to determine the line 

parameters and the even/odd mode formulation with the Fourier transform 

approach to compute the time domain results, the transient ana l ysis of 

coupled lines has been analyzed, showing the effec ts of both dispersion 

and even/odd mode coupling distortion. First, the frequency dependent 

creff of the coupled lines were presented for both the even and the odd 

modes with different line spacings and s ubstrate materials. These 

results were then used to examine pulse distort i on on tightly coupled 

lines at different distances, showing how both dispersion and even/odd 

mode coupling distort the input pulse a nd produce a spurious response 

on the adjacent line. Next, pulse distortion wa s studied as a function 

of the spacing between the center conductors. Thi s analysis showed how 

the dispersive characteristics of the lines can cause c o ns t ruc tive 

interferences on the sense line, giving a larger response than 

anticipated. In addition , these results showed that not only the 

separation of the center conductors needs to be considered in des igning 

decoupl ed lines, but equally important factors are ; the subs trate 

material, structural dimensions, and the distance over which t he lines 

are close to each other. 

4. 2 Multilayer Structures 

The desire to improve the p e rformance of MMIC's and the increasing 

interest in them has created a de mand f o r the accurate characteriza tion 



of multi-layer structures, and therefore requires the u se of rigorous 

analytical techniques. The desire to equalize the even and odd mode 

phase velocities in coupled lines , as well to l imit the spac e 

requirements, have made multilayer structures attractive for many 

applications as well. A full wave analysis is necessary bec ause the 

addition of either substrates or superstrates produces significant 

changes in the frequency dependent parameters that cannot be predicted 

accurately by quasi-static or other approximate formulation s . 
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This section uses the generalized Green's function in con j unction 

with the SDA to compute the frequency dependent paramete r s o f both 

single and coupled lines for multi l ayer structures. First the 

effective dielectric constant is computed as a function of frequency 

for different combinations of substrate materials and heights to 

illustrate the effect of the addition of substrates on the line's 

performance. Next a superstrate of varying height with the same 

relative dielectric constant as the substrate is added t o an open 

coupled line structure to consider the effects of superstrates. Then 

as the height of the superstrate layer is fixed , an upper ground plane 

is introduced, and the creff for the isolated, even, and odd mode c ases 

is plotted as the height of the ground plane is varied. Finally, an 

open symmetric coupled l i ne structure with two substrates is used to 

show how exchanging the two r e lative die l ect ric constants of the 

s ubstrates changes both creff and puls e propagation when all othe r 

dimensions are held constant. 

Increasing the number of layers , either substrates or 

superstrates , can create a significant differenc e i n the effective 
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dielectric constant. An open single rnicrostrip with two substrates is 

used in Figs. 4.27 through 4.30 t o illustrate the effects of these 

additional substrates. The total substrate height is held constant and 

s ix different combina tions of h and h are used. The h = 0 . 6 
L2 Ll L2 

mm graph represents a single substrate structure with a relative 

dielectric constant of c 
rL2 

Likewise the h = 0.0 mm graph also 
L2 

represents a single substrate line, but with a relative dielectric 

constant o f c 
r Ll 

The other graphs represent two substrate structures 

where the heights of the substrates are h and h , with relative 
L2 Ll 

dielectric constants o f c and c , respectively. 
r L2 rLl 

The effective dielectric constant begins at the single layer value 

f o r c when h 
r Ll L2 

0.0 mm, or ze r o percent of the total height. Since 

the dielectric substrate being added h a s a lower relat i ve dielectric 

constant than the substrate a lready p r e sent, a s h i ncreases , c ff 
L2 re 

begins to decrease. The h values of 0.1, 0.25, 0.35, and 0.5 mm 
L2 

represent, respectively, changes o f 16 .6 , 41.6, 58.3 and 83 . 3 percent. 

When h 
L2 

0 . 6 rom, or 100 p ercent of the total height, creff is 

identica l t o the single layer value for c . Thus the expectation is 
r L2 

that creff will decrease monotonically as h L
2 

i ncreases and the tota l 

change in creff at a given frequency will be equa l to 

Ll L2 
68reff(f) = 8 reff(f) - 8 reff(f) (4 . 4) 

where the Ll and L2 superscripts indicate that c reff i s evaluated f or a 

single s ubst rate microst ri p with a relative dielectric constant of c 
r Ll 

and crL
2

, r espectively. 

The first structure , with its r esults shown in Fig. 4.27, consists 

of a laye r o f RT/du r oid on top o f a layer of beryllium oxide . At low 
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frequencies, the smallest duroid layer, hL
2 

= 0.1 mm, decreases creff 

by 55 percent of ~creff even though the height added is only 16.6 

percent of the total height. Whe n h = 0.25 mm, or 41.6 percent of 
L2 

the total height, the de c rease in creff is a lmost 80 percent. In Fig. 
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4.28, which represents data for a structure with duroid on alumina, the 

difference at l ow frequencies is even larger; that is the 16.6 percent 

height change gives a 62 percent change in creff and the 41.6 percent 

height change results in a difference in creff of 85 percent of ~creff' 

Thus the addition of a relatively thin substrate can have a profound 

impact on the effective dielectric constant o f a multilayer structure, 

e specially for the lower frequencies. 

The thi rd s tructure , gal lium arsenide on beryllium oxide , shown in 

Fig.4 . 29 , gives results that are similar to the previous ones. The 

addition of the 0.1 mm l ayer gives a 44.7 percent decrease while the 

c hange of h from 0.5 mm to 0.6 mm resu l ts in only a change of only 6 
L2 

percen t of ~creff at low frequencies. Therefore, while the addition of 

a thin upper substrate layer with a lower c gives large changes in 
r 

creff' the addition of an equally thin lower substrate laye r with 

higher cr result s in relatively small changes in creff' Also, as the 

beryllium oxide layer is increased in height, the dispersive 

characteristics o f the structure decrease. This is expecte d because 

singl e layer s tructures are l ess dispersive when the relative 

dielectric constant of the subst r ate is l ess . 

The f inal two substrate configuration considered has a layer of 

alumina on a layer of gallium arsenide. The results, p l otted in Fig . 

4.30, do not have as drastic o f changes in creff as those of the 
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previous graphs, because the relative dielectric constants o f the 

substrates are closer to each other than those of the previo us 

structures. At low frequencies, the 0.1 mm and 0 . 25 mm graphs have 

changes of only 38 and 64 percent of ~creff respectivel y. Howe ver, 

like the other structures , as frequency increases , the percent c hanges 

in creff become closer to the percent changes in the layer height. At 

100 GHz, the 0.1 and 0.25 mm structures have changes in cref f of 16.3 

and 36.2 percent of ~creff' which are much closer to the hei gh t changes 

of 16.7 and 41 . 6 percent of the total height. Additionally, the 

increase in h to 0.1 mm (h = 0.5 mm) and 0.25 mm (h = 0 .35 mm), 
Ll L2 L2 

gives changes of 16.8 and 46.7 percent respectively, which are much 

closer to the corresponding changes for h . Note t hat whi le at low 
L2 

frequencies the addition of a thin upper substrate gives a much larger 

change in creff than the addition of a thin lower substrate , as the 

frequency is increased, the addition of a l ower substrate g ives about t he 

same change as t he addition of an upper substrate . 

This change in the effect of upper and lower substrates a s the 

frequency is increased can be attributed to changes i n the e lect ric 

field structure as the frequency increases beyond the quasi - s t atic 

region. As the frequency is increased, the electric field lines tend 

to bunch underneath the center conductor, connect i ng direct ly with the 

ground plane, rather than fringing out into the upper laye r s. This 

results in a field configuration that is similar to a parallel plate 

capacitor filled with two different dielectric slabs . Sinc e the 

parameters of the parallel plate capacito r are indep e ndent o f the 

relative placement of the slabs, then the microstri p parameters , in t he 
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high frequency region, will also be independent of the substra te 

placement. 

Since at very high frequencies the microstrip may be approximated 

by a parallel plate capacitor, it is instructive to consider the 

equivalent dielectric constant of a two-layer parallel plate capacitor. 

The equivalent dielectric constant, c , of the dual dielectric 
eqv 

parallel plate capacitor is the dielectric constant of a single layer 

of height h +h that when used in the parallel plate capacitor gives 
Ll L2 

the same capacitance as one filled with two layers that have dielectric 

constants c and c and heights h and h . Using elementary 
Ll L2 Ll L2 

circuit theory and the capacitance formula for a parallel plate 

capacitor, the equivalent die lectric constant is found to be 

c 
eqv 

h +h 
L2 Ll 

h /c +h /c 
L2 L2 Ll Ll 

ceqv is also the high freque ncy limit of creff' 

lim c ff(f) = c 
f~ re eqv 

i.e. 

Note that this equivalence applies only at freque ncies that are 

(4. 5) 

( 4. 6) 

sufficiently high so that almost all the electric fie l d lines lie 

directly between the center conductor and the ground plane with almost 

no fringing. Thi s concept of the equivalent dielectric constant can be 

extended to include more dielectric layers by characterizing each layer 

as another parallel plate capacitor attached in series. 

Since the difference in the e ven and odd mode phase velocity 

degrades the performance of a circuit, it is advantageou s to be able to 

equalize the modal phase velocities. One method that has been used in 

the past to accomplish this is to place a superstrate layer with the 
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same dielectric constant as the substrate on top of the center 

conductors. If the height of this superstrate is adjusted p r operly, 

then the even and odd mode phase ve l ocities will be equalized. The 

concept behind this approach is that striplines, which have a 

homogeneous dielectric medium, are TEM structures where the even and 

odd mode phase velocities are equal. Thus the placement of such a 

layer of the correct thickness would make the microstrip mo re like 

the stripline, i . e. a more homogeneous medium, and henc e equalize the 

even and odd mode phase velocities. 

This method of equalizing the modal velocities is now applied to 

structures with four different substrates and the results are shown in 

Figs. 4.31 through 4.34. The configuration, which is show n in each of 

the figures, is an open symmetric coupled mi c r ostrip with a s ingle 

substrate and two superstrates where h ~ oo. All four structures are 
Ul 

considered at f = 1 00 MHz, which is in the quasi-static region for 

these microstrips. This frequency was chosen because it gives very 

broadband characteristics, fr om 0 to about 1 GHz, and because many 

microstrip designs operate in or near the quasi-static region. 

In each of the four graphs, when the superstrate layer is very 

thin, there is not much effect on the effective dielectri c constant . 

However, when the thickness of the superstrate i s increased to 1 0 

percent of the substrate height, then creff f or all three cases, 

isolated, even mode, and odd mode, begins to increase as well . The 

effect of the superstrate l ayer is more pronounced, however , if its 

dielectric constant is much larger than that of the substrate. The odd 

mode effective dielectric constant, h owever, increases much faster in 
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this region than the other two creff's. When h equals infinity, then 
U2 

the microstrips are imbedded in a completely homogeneous medium with a 

relative dielectric constant of c 
rLl 

c 
ru2 

Therefore , in the limit 

as h goes to infinity, the effective dielectric constants for all 
U2 

three cases approach the relative dielectric constant of the substrate . 

For the four structures used, the infinite height condition is 

approximately satisfied when h is about 10 times h , i.e. whe n 
U2 Ll 

h = 10 mm. 
U2 

Although the modal phase velocities are approximately equal when 

h is about 10 times h , this i s not a very efficient d e sign due to 
U2 Ll 

the extraordinarily large thickness of the superstrate. Aside fr om the 

expense of such a circuit, the large dielectric slab c ould s upport 

spurious guided wave modes at relatively l ow frequencies that would be 

exc ited by discontinuities in t he lines . However, because the 

effective dielectric constant of the odd mode increases mu c h f a s t e r 

than the even mode for each of the four structures , at o ne othe r h 
U2 

value besides infinity, the even and odd mode phas e velocities a re 

equal. For al l four materials being considered, this occ u rs whe n h 
U2 

i s approx imatel y the same height as the substrate. The even/odd mode 

equalization occurs when h = 0 . 97 mm for the duroid and moves 
U2 

slightly higher as the dielectric constant increases. Fo r the 

beryllium oxide substrate and superstrate combi nation, the equali zation 

occ urs when h is equal to 1.06 mm and at around 1 .0 7 mm for both the 
U2 

alumina and gallium arsenide structures. 

The motivation behind adding a s upers trate layer to the microstrip 

wa s to make the structure more TEM, like t he stripline, by mak i ng the 
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dielectric surrounding the center conductors seem approximately 

homogeneous. For the structures considered, this approximation to the 

stripline occurred when the superstrate layer was about ten times the 

substrate layer. This might have been anticipated because a shielded 

microstrip has approximately the same characteristics as an open 

microstrip. This is more evident when the distance to the upper ground 

plane and side walls are at least five times the substrate height o r 

center conductor width (46). However, the even/odd mode equalization 

also occurred for a much smaller h value, a value at which the 
U2 

structure does not approximate the stripline and is not TEM. Also note 

that when h is greater than this first equalization point, the odd 
U2 

mode's creff is greater than the even mode's creff' something that did 

not occur in the single layer structure. This indicates that a 

completely different mechanism is responsible for the equalization of 

the even and odd mode phase velocities. 

As long as the microstrip is operated in the quasi-static region, 

then the location of the equalization point stays constant, b ecause 

creff is constant for the frequencies in this region. However, as the 

frequency increases past the quasi-static region of the structure , the 

location of this equalization p oint moves to larger values of the 

superstrate height. At some frequency outside the quasi-static region, 

the equalization point changes to a value so large that it gives no 

advantage in design, essentially eliminating it as a possibility. This 

occurs because as frequency increases, the electric field lines tend to 

go in a straight line from the center conductor to the ground plane 

with less and less lines in the superstrate regions. Thus the 



superstrate has a decreasing effect on creff as the freque ncy 

increases . 
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While the inability to find a realizable superstrate height that 

matches the even and odd mode phase velocities at high frequencies is a 

significant drawback to this method, many microwave circuit s operate in 

the quasi-static region, and so there are applications that can use 

this concept. In addition, it will be shown in section 4.3 that this 

even/odd mode equalization phenomenon can also occur when multiple 

substrates are used in the structure instead of an additio nal 

superstrate. Since the substrates lie between the center c o nductor and 

the ground plane, as the frequency increases, they still have a 

significant effect on the electric field lines of the structure, 

increasing the potential bandwidth of the design. Also, since the even 

and odd mode phase velocities tend to approach each other a t very high 

frequencies, it will be possible to achieve a very good match of the 

even and odd mode phase velocities ove r an almost infinite b andwidth. 

The necessity to control electromagnetic emissions , the desire to 

cutoff higher order modes, as well as the need to reduce radiation 

losses, often necessitate shielding the microstrip circuit . To b e able 

to accurately account for the effects of shielding on the transmi ss ion 

lines requires the use of a rigorous analytical approach. For tunately, 

due to the general manner in which the generalized Green's function was 

derived, as well as the flexibility o f the spect ral d omain approac h, it 

is as easy, if not easier, t o compute the frequenc y dependent 

parameters f or shielded structures as for open o nes . Figures 4. 35 

through 4.38 deal with the presence o f an upper ground plane , o r cove r 
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sheet, in a symmetric coupled microstrip structure with one substrate 

and two superstrates. The same four dielectric materials are used and 

the effective dielectric constant for the isolated line and the even 

and odd modes of the coupled lines are computed as the height o f the 

upper ground plane, h , is varied . 
Ul 

As h gets smaller, then the structure becomes more l ike a 
Ul 

stripline, and so the effective dielectric constant f or all three cases 

approaches the relative dielectric constant of the substrate. On the 

other hand, as h becomes l arge , then the structure becomes more l ike 
Ul 

an open microstrip, and the effective dielectric constants f or the 

isolated, even and odd modes approach approach t he corresponding values 

shown in Figs. 4.31 through 4 .34 when h = 0.3 mm . As with the 
U2 

previous f ou r structures, for generality, the frequency a t which the 

parameters are computed is 100 MHz. 

The most noticeable characteristic in all f ou r graphs is t hat the 

effective dielectric constants vary over a large range of values a s t he 

height is changed instead of mono tonically decreasing from t he 

stripline value to the open microstrip value. creff begins a t t he 

maximum value when h is the smallest and begins t o decrease in 
Ul 

magnitude until a minimum is reached when h is somewhere between 0 . 1 
Ul 

and 0 .4 mm, depending on the dielectric material used. As h 
Ul 

continues increasing past this value, creff begins to increase a s well, 

approaching the open microstrip value when h is about 10 times the 
Ul 

substrate height, i.e. when h ~ 10 mm . 
Ul 
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The manner in which c ff changes as h varies can be understood 
re Ul 

by considering the field structure in shielded configuration. When h 
Ul 

is very small , then the paths of the field lines exist almost ent irely 

in the dielectric material with only very short distances in the air, 

and so c is approximately equal to the c of the substrate. As the 
reff r 

air gap increases in height, then the field lines that connect with the 

c ove r layer pass through an air l ayer whose thickness is no longe r 

negligibl e and therefore has greater effect on the fields. Because the 

dielectric constant of the air is lower than that o f the substrate or 

superstrate, creff begins to decrease in value. At some point, 

however, the upper ground plane is sufficiently distant so that more of 

the electric field lines go through the substrate to ground rather than 

through the superstrates, bypassing the air gap and negating its 

effects. This occurs even though the distance from the center 

conduc tors to the upper ground plane is shorter than the distance to 

the lower ground plane. But, because the substrate has a h igher 

dielectric constant than the equivalent combination of the upper two 

layers , it attracts more of the field lines. 

As the cover sheet moves farther away from the center conductors, 

l ess field lines go fr om the c e nter conductors through the air layer to 

the cover sheet , thereby increasing creff' Finally, wh e n the cove r 

sheet is far enough away , it attracts virtually no field l ines and n o 

longer has any noticeable effect on the structure. When this happens , 

c f for all three cases approach the corresponding values f or the 
re f 

open structure. 
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The hu
1 

value corresponding to the minimum creff value varies 

slightly as the relative dielectric constant of t he subst r ate and 

superstrate changes. Additionally, while t he minimum point is 

approximately the same for each of the three cases , i t varies slightly , 

with the odd mode having the lowest h value and the even mode the 
Ul 

h i ghest . For the RT/duroid substrate and superstrate combina tion, Fig . 

4.35, the minima occur when h is about 0.43 mm. If the relative 
Ul 

die lectric constant of the material was decreased, it would be expected 

that the minimum point would approach 0.7 mm, so that the total 

superstrate height would be equal to the height of the substrate . 

Also, the minimum points of each of the three cases woul d tend to 

approach each other more closely with the even and odd mode creff 

approaching the isolated value, which in turn woul d be approaching 

unity. In the limit as the relative dielectric constant app roached 

unity, the graphs would flatten completely and no distinct minimum 

would exists. 

As the dielectric constant increases , however, the minima points 

occur at lower values of h ul ' and the locations for e ach o f the three 

cases increase in separation. For the beryllium oxide structure , Fig . 

4.36, the minima occur for h near 0.21 mm, while f or the alumina 
Ul 

substrate and superstrate, Fig . 4.37, they occur near 0 . 19 mm . When 

gallium arsenide is used, Fig. 4.38, the minima occur near 

h = 0 . 16 mm, but differ noticeably for each case. The odd mode's 
Ul 

minimum occurs at h ~ 0.155 mm while the even mode ' s happens around 
Ul 

0.175 mm. As would be expected, the minimum for the isolated case ends 

up between that of the even and the odd mode at h ~ 0 . 165 mm. 
Ul 
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In addition to the locations of the minima moving, increasing the 

relative dielectric constant of the material a l so makes the change in 

creff much greater as well. For the duroid structure, the introduction 

of a 0.01 mm air gap decreases creff by about 2 percent and the 0.1 mm 

gap decreases it by 12 percent. The decrease at the minimum point is 

17 percent lower than the stripline value and 7 percent lower than the 

open microstrip value. When the dielectric is changed to gallium 

arsenide, the changes in creff become much more drasti c . The 0 . 01 mm 

and 0.1 mm air gaps decrease creff by 14 and 40 percent, respectively. 

The minimum value of c is now 40 percent lower than the stripline 
reff 

value and 23 percent lower than the open microstrip cas e . 

Thus if a stripline circuit were designed with similar dimensions 

on gallium arsenide, but in production there were a 10 micron gap 

between the upper ground plane and the dielectric materia l, there would 

be and 8 percent increase in the wavelength and hence an equivalent 

decrease in the e l ect rica l dimensions of the circuit, s ince 

A ~ 1/vcreff ' If the air gap were 0. 1 mm, however, the wavelength 

would be increased by 23 percent. Changes in the electrical dimensions 

of the circuit of this magnitude would certainly have an adverse effect 

on the circuit performance. If, instead, the circuit had been designed 

as an open structure without accounting for the shielding, then, 

depending on the placement of the cover sheet, there could also be 

significant changes in the parameters of the lines. Clearly the 

presence of a cover sheet, which is very common in production designs, 

must be taken into account using a rigorous, full wave technique like 

the SDA. 
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As with the previous dual superstrate structures, it is possible 

to adjust the dimensions to equalize the even and odd mode phase 

velocities. For the four structures under consideration, a cover layer 

height of slightly less than 2 mm makes the even and odd mode c the 
reff 

same. However, also like the two superstrate open structure, as the 

frequency increases above the quasi-static region, the h value 
Ul 

required to maintain the even/odd mode equalization decreases. As the 

frequency increases, the electric field lines tend to gather along the 

path with the highest capacitance . In order to maintain enough of the 

field lines in the superstrates, the capacitance of the upper l ayers 

must be increased, and so the cover sheet height must be reduced to 

maintain the even/odd mode equalization. Due to the large change in 

the required cover sheet height for frequencies above the quasi-static 

region, this method of equalizing the even/odd mode phase velocities 

can only be u sed either in the quasi-static region or for very 

narrowband applications at frequencies beyond the quasi-static region . 

It wa s shown previously that the presence of multiple substrates 

in the microstrip structure causes significant deviations in cre ff from 

the single layer value. However, the effect of the relative placement 

of the substrates has not been dealt with yet. At very high 

frequencies, the microstrip can be approximated by a parallel plate 

capacitor, and so creff(oo) is determined by the heights and relative 

dielectric constants of the substrates, and not by the relative 

locations of the substrates . At lower frequencies, however, the 

position of a substrate layer relative to the other substrate layers 

can have an important effect on the line parameters. 



To illustrate the effect of substrate placeme nt on creff' an open 

symmetric coupled microstrip structure is used with two substrates, 

alumina and RT/duroid 5880. The first configuration, designated 

structure #1, places a 0.3 mm duroid layer on top of an alumina layer 

of the same height . The next configuration, called structure #2, 

switches the substrates, placing the alumina on top of the duroid, 

again with both layers having the same height. The other dimensions 

are the -same for both structures and are listed in Fig . 4 . 39. The 

effective dielectric constants for the two configurations are plotted 

in Fig. 4 . 39 as a function of frequency for the isolated case and for 

the even and odd modes of the coupled lines. 
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Structure #1 has a much lower creff than structure #2, about 36 

percent l ower, indicating that structure #1 should be less dispers ive 

than #2. On the other hand, the separation in the even and odd mode 

phase velocities is much greater in #1, 16 percent, compared with the 

5.6 percent separation for structure #2. Thus structure #2 will have 

much less distortion due to coupling than #1. Also while creff for the 

odd mode is lower than the even mode in #1, switching the substrate 

layers as in #2, results in the even mode creff being much l ower than 

the odd mode . 

Pulse distortion on these structures is shown in Figs. 4.40 and 

4.41 for a Gaussian pulse with T = 30 ps at a distance of 250 mm. The 

signal line response on structure #1 has been critically distorted and 

has separated into the even and odd mode pulses. On the other hand, 

the signal line response on structure #2, while greatly reduced in 

magnitude, is not nearly as distorted as the response on #1 because of 



-.... 
Co) 

QJ 
.... 

8 .0 

6 .0 

4 .0 

hut t; w s w 
rUll• •I• •I• --l 

~ t;rL2 

1~1 t;rLl 

Structure #1: 

erL1 = 9 ·7 • l:r12 
Structure #2: 

ErLl = 2 ·2 · £r12 

- 2 .2. 

- 9.7 , 

Structure # 1, isolated 
--------- Structure #1. even mode 
·········· ······-· Structure #1 . odd mode 
--------- Structure #2. isola. ted 
- -·-·----- Structure #2. even mode 
------ Structure #2. odd mode 

erUl = l.O, hUl = 00 

hL
1 

= 0 .3mm, h
12 

= 0 .3mm 
w = 0 .6mm, s = 1.2mm 

_, 
.---- .,.,.. 

_..---....--*"""~__.,. .. 

------------------------------------------------------------------------------------------------
··········································· 

___ ...... -······· 

,,~ ,, 

....... ···-·············-·········································································· 
2.0 ~--~----r---,----.----r---,---~---.,---~---r---,----~--,---~----r---~ 

0 .0 20.0 40.0 60.0 80.0 

Frequency in GHz 
Fig. 4.39. t: vs. frequency for open symmetric coupled mult ilayer 

rett 
microstrips on alumina and RT/duroid 5880 substrate. 

...... 
N 
co 



(1) 
fl) -:l 
0.. 

~ 

0 

(1) 

"d 
:l 

...._,) ·-c 
tll) 
ct1 
~ 

5 .0 

2.5 

0 .0 

- 2.5 

Signal line 
Sense line 
Undistorted 
Isolated 

/.-· ·-.:~-, 

! 1/ \ \ 
! i \ \ 
/ i \ \ 
! i \ \ 
j i \ \ 
! i \ \ 
! i \ ~ 
! i \ .\ 
;i ~ . 
,"-' ~ \ . " . 

---, I I 
', I 

',, 1.20 / 
' I 

1.30 
\ I 

' I 
' I \ I 

\ I 
' I 
' I \ I 

' I 
\ I 

\ I 
' I 

hU1 

hL2 

hL1 

erLl 

' , , __ , 
Time in nanoseconds 

t; w s w 
rU11• •I• •I• • I 

~rL2 
--
t;rL1 

- 9.7, hLl - 0.3mm 

- 2.2, hL2 - 0 .3mm 

- LO, hUl - 00 

0 .6mm, s - 1.2mm 

1.40 1.50 

Fig. 4.40. Pulse distortion on multilayer coupled lines, 1 = 250mm, 

.,.- = 30ps, structure # 1. 

T 

1-' 
N 
\D 



5 .0 

a> 
rn -::::1 
~ 2.5 

~ 

0 

Q) 

1j 

::::1 
.,_) ..... 
c: 0.0 
C1.l 
lll 
~ 

-2.5 

Signal line 
Sense line 
Undistorted 
Isolated 

1.50 

h l: w s w 
Ut rU11• .... •I• •I ...... 

:· · .. 
/ /'.-\ 
. I \ \ 

~~/ \\ : I \ \ 
! i \ \ 
f i \ \ 
: /, 
/ t 

hL2 £rL2 
--

hL1 t:rLl 
-

l:rLl - 2 .2, hLl 

t:rl2 - 9.7, hL2 

l:rUl - 1.0, hUl 
- 0.6mm, s 

\ 
\ ' \ . , 
\ \ I • 
\ • I 1 \ '/"" .. 70 

\ I 
I I 
\ I 
\ / 
\ I 
\ I 
\ I 
\ I 
\ I 

\ , 
.... _,' 

1.60 

- 0 .3mm 

- 0.3mm 
- 00 

- 1.2mm 

1.80 

Time in nanoseconds 

Fig. 4.41. Pulse distortion on multilayer coupled lines , 1 = 250mm, 

-r = 30ps, structure #2. 
....... 
w 
C> 



131 

the smaller separation in the even and odd mode creff for this 

configuration. The s e nse line responses for the two structures are 

also markedly different. The most important diffe r ence between the two 

responses is that structure #1 has a negative l eading sense line 

response, whereas structure #2 has a positive leading response . This 

difference arises because the odd mode is faster tha n the even mode on 

structure #1 , while the even mode is the faster of the two on structure 

#2 . Therefore, changing the relative placement o f the the s ubs trate 

layers has a significant effect on the characteristics o f the 

structure. 

Using the gene ralize d Green's function in conjunction with the 

spectral d omain approach allowed the accurate ana lysis o f comple x 

multilayer microstrip structures. Initially, it was shown that the 

addition of even relatively thin substrate layers with different 

dielectric c onstants resulted in very large changes in creff for the 

isolated line, even mode, and odd mode . Then attentio n was turned to 

the addition o f sup e rstrate layers , particularly with respect to the 

use of additional superstrates to equali ze the even and odd mode phase 

velocities. While it was poss ible to match the even and odd modes in 

the quasi-static region, outside of this region the ma tch wa s eithe r 

very narrowband or required impracticably large superstrate heights. 

Next a cover laye r was introduced in the tw o superstrate structure and 

it was shown that the addition of t his shielding layer created a wide 

variation in creff for each of the three cases. Finally, the e ffect of 

changing the positions of the substrates was exami ned, showing that the 

relative p osition of the subs tra tes affects not o nly the magnitude of 
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the isolated case, but also can cause the even mode creff to be lower 

than the odd mode, something not possible with single substrate 

structures. 

4.3 Zero Coupling Structures 

It was shown in the previous section that the dimensions o f a 

multiple superstrate structure could be adjusted t o equalize the even 

and odd mode phase velocities. Unfortunately thi s t ype of design has a 

very narrow bandwidth and matches may n ot be practical at certain 

frequencies. The bandwidth limitation arises because the field 

structure that is responsible for the match lies in t he superstrates 

and, as frequency increases, most of the fields move into the substrate 

layers. Thus if the even/odd mode matching conditions could be 

obtained using the substrate layers, then it should be p ossible to 

obtain a more broadband match. 

In Fig. 4.39, the odd mode creff was higher than the e ven mode 

creff for structure #2. However , if the same structure were completely 

filled with either of the two dielectric materials instead o f a 

combination of the two, then the odd mode creff wo uld be less than the 

even mode, as is the case with all single layer structures . The refore 

there must exist a combination of h and h which would equalize the 
Ll L2 

even and odd mode phase veloc ities. The existence of these even/odd 

mode equalization structures, or zero coupling structures, is due t o a 

mechanism that is similar to the one that was f ound in the mult iple 

superstrate structures. In order for this match to exist , the 

dielectric constant of the lower substrate must be less than that o f 
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the upper substrate . In addition, it wil l be shown that the differenc e 

in the dielectric constants must surpass some value that depends in 

some way on a l l of the dimensional parameters of the microstrip 

structure . Thus even if c is less than c it may not be p ossible 
rLl rL2 

to equalize the even and odd mode phase vel ocities. 

To study the characteristics of the zero coupling structures, an 

open symmetric coupled microstrip is u sed with two substrates below and 

air above. The total substrate height of the structure, des ignated 

h is hel d constant while the heights of the two layers are 
total' 

varied . When h is equal to zero, then h i s equal t o h 
1 

and the 
Ll L2 tota 

structure has a single substrate with a relative dielectric constant of 

c If h is increased until it is equal to h 
1

, then h is 
r L2 Ll tota L2 

equal to zero and the structure once again has onl y a single substrate, 

this time with a relative dielectric constant of c 
r l 

In Fig. 4.42 the upper substrate is chosen to be beryllium oxide 

and the l ower substrate to be either air or RT/duroid. The e ffec tive 

dielectric constants for the isolated, even mode, and odd mode are 

plotted as h varies from zero to h 
1 

= 0 . 6 mm. Whe n c is equal 
Ll t ota r Ll 

to unity , the places where the even and odd modes have the same creff ' 

referred to as the zero coupling points, occur at h "" 0.1 mm and 
Ll 

h 0 . 6 mm = h . The second zero coupling po int occurs when 
Ll total 

h h because t his structure is a pure TEM line si nce the 
Ll total 

dielectric is homogeneous with a relative dielectric constant of uni ty . 

This structure is just two c o nductors suspended in air abov e a ground 

plane. The refore , whenever the lowe r substrate is air, the n o ne of the 

possible zero coupling points wi l l be at h = h . 
Ll total 
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When the lower substrate is changed to RT/duroid, then there is no 

value of hLl that makes creff the same for the even and odd modes . 

However, if the dielectric constant of the lower substrate is reduced 

slightly from 2.2 to 1.8, then zero coupling points will exist. 

Although there is no geometry that allows the even/odd mode 

equalization when c = 2.2, it is possible to significantly minimize 
rLl 

the difference in the modal creff and therefore drastically reduce the 

effects of coupling distortion. A relatively good match in 

is obtained when h is in between 0.32 and 0.42 mm. 
Ll 

c 
re 

and c 
r o 

The next two-substrate structure has a layer of gallium arsenide 

on t op of either an RT/duroid o r a beryllium oxide l ower substrate. 

When the lower substrate is RT/duroid, there are two zero coupling 

points, one near h = 0.14 mm and another near h 
Ll Ll 

0 .54 mm. The 

existence of the zero coupling points depends on having a configuration 

where c is less than c and since at each of the dimensional 
re ro 

boundaries, i . e. at hLl equal zero and hLl equal htotal ' ere is greater 

than c , there must be at least two points where c 
ro r e 

c 
ro 

The other 

possibility is that c is greater than c for all h except f o r one 
re ro Ll 

point where they are equal. This is similar to quadra tic equations 

which always have two roots, although it is possible tha t the two root s 

will have the same value. 

As the relative dielectric constant of the lower substrate is 

increased, 

together. 

the locations of the ze ro coupling po ints move closer 

At some value of c the two points will have moved 
r Ll 

directly on top of each other, giving only one physic a l zero coupling 

structure. If c is increased beyond this point, then the graphs for 
rLl 
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the even and the odd modes no longer cross and there are no zero 

coupling points. This case is shown in Fig. 4.43 for c = 6 . 8. Thus 
r Ll 

with the gallium arsenide and beryllium oxide combination it is not 

possible to make c equal to c nor is there any value of h that 
re ro Ll 

significantly minimizes the differences between c and c . 
re ro 

Note that the condition on c and c f or the existenc e o f the 
rLl rL2 

zero coupling points is not dependent only on the difference between 

the dielectric constants. A combination of c = 1 . 8 and c = 6.8, 
r Ll rL2 

which has zero coupling points, has a smaller change in the r e lative 

dielectric constants, ~c = 5.0, than the gallium arsenide and 
r 

beryllium oxide combination, which has a ~c of 5.4. Nor is thei r 
r 

existence dependent solely on the ratio of the relative dielectric 

constants. A structure with c equal to unity and c e qual to 1 . 7 
rLl r L2 

has zero coupling points even though the ratio of the relative 

dielectric constants, 1 .7 , is less than the gallium arsenide/beryllium 

oxide ratio, which is 1.79. 

One reason that there is not a simple requirement on t he 

dielectric constants of the substrates is that the existence of zero 

coupling points, especially at lower frequencies, will depend o n the 

parameters of the superstrates as well as the substrates. For 

simplicity only open microstrips are considered, but the presence of a 

cover sheet or additional superstrates could al so be t reated in a 

similar manner to find the zero coupling points, if they exist, for any 

structure. Clearly the complexity of the microstrip boundary value 

problem precludes the possibility of finding a simple formula that 

determines if the even/odd mode equalization is p ossible. I ndeed , n one 
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of the approximate formulas even predict the existence of these zero 

coupling structures, let alone being able to determine the dimensional 

requirements. Therefore the analys is of t hese types of structures must 

be carried out with a rigorous solution of the boundary value problem. 

Figures 4.42 and 4.43 show that zero coupling structures can exi st 

at a single frequency. The next step is to examine the frequency 

dependence of the zero c oupl ing points. In Figures 4.44 t hrough 4.46, 

the locations of the zero coupling points, i.e. the value of h t hat 
Ll 

makes c = c , are plotted versus frequency, with the frequenc y on a 
re ro 

logarithmic scale. As the operating frequency is increased, c and 
r e 

c begin t o approa c h the isolated line value and hence the difference 
ro 

between them decreases. This occurs for all values o f h s ince the 
Ll 

electrical separation of the conductors increases as frequency 

increases . 

As the frequency t o continues increase , a point is reached where 

it i s n o t possible to unique ly determine a zero coupling point because 

c ~ c for all h values. Beyond t hi s frequency, any v alue of h 
re ro Ll Ll 

will give a g ood match for c and c . The freque ncy a t which this 
re ro 

occurs depends on h ow close the modal effective dielectric constants 

need to be for the particular design. A larger tolerance in the 

separation of the modal effective dielectric constants decreases this 

f requency and a s maller tolerance increases it. Thus the graphs in 

Figs . 4.44 through 4.46 are given o nly up to a certain frequency, after 

which almost any va lue of h results in l ess than a tenth of a percent 
Ll 

separation in c and c 
r e ro. 
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The first zero coupling structure, whose resul ts are shown in Fig. 

4 . 44, uses beryllium oxide as the upper substrate and air a s the lower 

substrate . RT/duroid could not be used f or the l ower substrate in this 

case because , as shown in Fig. 4.42, there is no value of h which 
Ll 

makes c equal to c 
re ro 

Because the lower substrate is air, then one 

of the possible solutions is h = h 
1

, and since this represents a 
11 tota 

pure TEM structure, the solution is constant for all frequencies. 

While this solution is not generally practical in t e r ms of actual 

circuit design, the second root does represent a possible 

configuration, with h 
Ll 

= 0.11 mm. The zero coupling p oint i s 

constant versus freque ncy in the quasi-static region which ends near 1 

GHz . Above this frequency, the h value rises slightly, reaching a 
Ll 

maximum around 17 GHz, that is 10 percent higher than the low frequency 

value. As the frequency increases further, the second r oot begins 

decreasing slowly until the root location can no l onger be determined 

uniquely. Although there is a fairly rapid change in t he root location 

fr om 17 to 100 GHz, at these higher frequencies the sepa ra tion between 

c and c is a relatively weak function of h . Thus i n this r egion, 
re ro u 

increasing the frequency decreases the importance of the location of 

the root. 

The next structure, shown in Fig. 4.45, uses al umina as the uppe r 

substrate with either air or RT/duroid below. Increas ing the relative 

dielectric constant o f the uppe r substrate f rom 6.8 to 9.7 decreases 

the second zero coupling point for the air substrate f r om 0.11 to 

0.068 mm. The required h achieves a maximum near 17 GHz , as before, 
Ll 

but with a 14 percent deviation from the l ow frequency l ocation of the 
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root. However , the change is only 1 . 6 percent of the total height o f 

the substrate compared with a 2 percent change when beryllium oxide was 

the upper substrate . Thus increasing the relative dielectric constant 

decreases the required height of the lower substrate and stabilizes its 

value with respect to changes in frequency. 

When the dielectric constant of the lower substrate i s i ncrea sed, 

the required values move closer together and change mo re rapidly with 

frequency outside the quasi-static region. In the low frequency 

region, the first root decreases from 0.6 to 0.51 mm while the second 

root increases from 0.068 to 0.2 mm . As c is incre ased further, 
rLl 

then the roo t locations would move closer and closer to each o ther 

until they reach the same value. If c is increased past this point, 
rLl 

then the zero coupling points would no longer exist . 

As the frequency is increased above the quasi-s t atic region, then 

the zero coupling points begin to change, with the first r oot 

decreasing slightly and the second root increasing in value. The 

minimum of the first occurs near 17 GHz and is a de c rease of 3.4 

percent of h while the second root reaches a maximum at 15 GHz 
total 

that is 5 . 7 percent of h 
total 

Since the changes in the required h 
Ll 

are relatively small, even with the duroid substrate, u sing the 

substrates instead of the superstrates to equalize the moda l phase 

velocities gives very wide band results. 

The final structure, shown in Fig. 4.46, replaces the alumina 

layer with a layer of gallium arsenide and uses the same two materials 

for the lower subst r ates . With the air as the l ower substrate, the 

quasi-static value for the roots are at 0.6 and 0.055 mm while the 
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duroid l ower substrate give values of 0.54 and 0 . 15 mm . Add i t i onally, 

the deviations in the zero coupling points versus fre quen c y h a v e been 

reduced from the previous configuration. With air a s the l o we r 

substrate , the maximum change in h is 1.4 percen t of h 
1 

a nd with 
Ll tota 

the duroid substrate the first root varies by 1.4 perce nt a nd the 

second by 3.8 percent. Again these very small deviatio ns giv e this 

configuration a very wide bandwidth. 

Realistic circuit designs require many d i fferen t c e nt e r conductor 

spacings, and so it is important to consider the effects t ha t d i ffer e nt 

spacings have on the location of the zero coupling points . Fi gures 

4.47 and 4.48 show the zero coupling points for two configurat i o ns wi th 

RT/duroid as the lower substrate and either alumina or ga l l ium arsenide 

as the upper substrate. Both roots are computed f o r t hree diffe rent 

center conductor spacings; 0.6, 1.2, and 1.5 mm. 

As the spacing increases, there are two maj o r effe cts o n the zero 

coupling points; 1) the frequency above which the r oots c a n not be 

uniquely defined decreases and 2) the zero coupling points v a ry more 

widely with frequency. As the physical spacing of t he c ente r 

conductors increases, the frequency at which the elec tri cal spacing i s 

s ufficiently large to isolate the conductors decrease s, causing the 

first effect. The second effect, which might seriousl y reduce t he 

bandwidth of the design, is offset by the decreasing import ance of the 

root l ocation with frequency in the regions where it is changing 

rapidly. In addition, larger spacings have less separati on b etween the 

even and odd mode creff' and so it becomes less crit ical t o obtain and 

exact match. 
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Using alumina as the upper substrate, as shown in Fig. 4.4 7 , 

results in a larger change in h as both the spacing and the frequency 
Ll 

change as compared to using gallium arsenide as in Fig. 4.48 . Changing 

the center conductor spacing from 0.6 to 1.2 mm gives an 8 percent 

decrease in the first root and an 11 percent increase in the second 

with the alumina substrate, and a 5 percent decrease in the first root 

and a 7 percent increase in the second root when the upper substrate is 

gallium arsenide. Increasing the spacing on the alumina s ubstrate to 

1.5 mm gives 14 and 18 percent changes in the first and second roots, 

respectively, compared with 8 and 11 percent changes for the gallium 

arsenide substrate . The zero coupling points on the alumina substrate 

also vary much mo re with frequency than those for the gallium arsenide . 

For both upper substrates, data at the higher frequenc i es , i . e. around 

80 t o 100 GHz, are in the region where c ~ c for wide ranges of 
re ro 

h , and so the rapid changes on the roots in this region are not as 
Ll 

relevant. 

The equalization of the even and odd mode phase velocities has 

many single frequency advantages; for example it increases the 

directivity and hence the isolation of microstrip couplers. However , 

the ability to achieve a good wideband match of the modal phase 

velocities also offers the possibility of eliminating almost completely 

the distortion of pulses due to coupling. Since it is impossible to 

get a perfect even/odd match at all frequencies , the frequency spectrum 

of the pulse must be considered in order to determine which band of 

frequencies is the most impo rtant in determining the h value. If the 
Ll 

pulse spectrum has no significant frequency components outside the 



148 

quasi-static region, then the low frequency value of h could be used. 
Ll 

However, if the pulse spectrum is very wide, as is the case with the 

pulses that have been considered so far, then a value of h must be 
Ll 

chosen that minimizes the difference between c and c ove r the 
re ro 

bandwidth of interest. In general, this value of h will be somewhere 
Ll 

between the low frequency value and the minimum value, if the firs t 

roo t is used, or the maximum value, if the second root is u sed. 

To illustrate how the zero coupling points can be used to 

eliminate distortion due to even/odd mode coupling, the single l ayer 

open symmetric coupled mi c rostrip o n alumina subst rate in Fig . 4.10 is 

redesigned to lower the coupling between the lines . The center 

conductor widths and spacing are retained and the total height of the 

substrate is maintained as well, but a layer of duroid is added below 

the alumina to equalized the even and odd mode phase velocities . This 

example will use the second root, as shown in Fig . 4 . 45, although it 

would be equally valid to use the first r oot. The l ow frequency value 

of h is 0.1991 mm and the maximum value, which is at 15 GHz , is 
Ll 

0 . 2334 mm. The Gaussian pul se has a ha lf width, half maximum of 30 

picose conds, and at 15 GHz, the spectrum has fallen off to 13 . 5 percent 

of the maximum value. Also, since the spectrum of the pulse falls o ff 

so rapidly, equation (4 . 1), the lowe r frequenc ies are the most 

important and frequenc ies higher than 15 GHz do not critically affect 

the pulse. Using this information, h i s chosen to be 0.22 mm . 
Ll 

Using the chosen dimensions, creff is compu ted and is shown in 

Fig. 4.49 as a function of freque n cy b oth as a pre liminary .t o the 

computation of pulse distortion as well a s to check the validity of the 
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matching process. In the quasi-static region as wel l as for 

frequencies above 25 GHz, c is greater than c , which is a revers al 
ro re 

of the single layer situation, while from 5 t o 25 GH z , c becomes 
r e 

slightly larger than c . This design achieves a v e ry good match of 
ro 

the even and odd mode creff at the lower frequenci e s , wi t h l e ss than a 

one percent difference in the values up to 40 GHz. The s epa r ation 
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between c and c is the largest in frequencies fr om 40 t o 85 GHz a nd 
re ro 

reaches a maximum s e paration of less than 1 . 6 p e r cen t a t 60 GHz . When 

the frequency gets larger than 100 GHz, the separation be t ween c and 
re 

c becomes negligible due to the increasing elect r ical sep arat i on of 
r o 

the center conductors. Since neither the even no r the odd mode creff 

is consistently larger than the other, the disto rtio n of t he pulses 

will n ot appear the same a s the previous cases, a nd it is not 

immediately evident whether the leading sense line r esponse wil l b e 

positive or negative. However, since the even mode i s fa ste r i n the 

quasi-static region, where the majority of the pulse s pectrum l ies , i t 

is probable that the leading r e sponse will be due mostly to e v e n mode 

c ompo nents and therefo re the sense line should have a positive leading 

response . 

In a ddition to reducing the separatio n of c and c , the 
re r o 

addition of the substrate layer drastically changes the dis persive 

characteristics of the lines. Comparing Fig. 4.49 wi t h Fi g s . 4. 9 and 

4 . 10, shows that the new structure will be less d ispersiv e t han t he 

single layer alumina structure, but slightly more d i s p e r sive t ha n t h e 

configuration with the duroid substra t e. 
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Having computed the effective dielectric constant for the 

frequency band of interest, the propagation of the pulse on the coupled 

lines may be computed. Three different distances are used, 62.5 , 1 25 , 

and 250 mm, for comparison with the previous pulse distortion result s 

for both the duroid and alumina substrates. The 62.5 mm distance used 

in Fig. 4.50 corresponds to the graphs in Fig. 4.15 where the substrate 

is a single layer of alumina. The 125 mm l ength used for Fig. 4.51 is 

comparable to both Fig. 4.16, alumina substrate, and Fig . 4.11, the 

duroid substrate. Finally, Fig. 4.52 with a distance of 250 mm , 

corresponds to the results in Fig. 4.12 with a duroid substrate. The 

isolated line response is not graphed in Figs. 4.50 through 4.52 

because there is no visible difference between it and the signal line 

response. 

At 62.5 mm the signal line response is very similar to the 

undistorted pulse, the only difference being that it is shifted 

slightly with respect to it. The sense line response is negligible , 

having a maximum amplitude of less than one percent of the undistorted 

pulse . At this distance, the lines on the alumina substrate showed a 

significant reduction in the amplitude of the signal line, about 40 

percent, and had a sense line response that approached 50 percent of 

the undistorted pulse . 

As the pulse travels farther on the low coupling structure , 

reaching 125 mm, dispersion distortion begins to affect the pulse, 

while coupling distortion is unnoticeable. The signal line is still 

unaffected by coupling, and the maximum sense line r esponse has risen 

to only 1 .9 percent of the undistorted pulse . Contrasting this is the 
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responses shown in Figs . 4.11 and 4.16 , where the signa l line r esponse 

on the alumina substrate had almost completely split into the e ve n and 

odd mode components and on the duroid substrate it had suffered a 20 

percent degradation in amplitude . 
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At the final distance, 250 mm, dispersion distortion has 

noticeably changed the signal line response, but coupling distortio n 

has been eliminated as a limiting factor for the struc ture. Even at 

this distance, there is no visible differenc e between the graphs of the 

signal line and the isolated case, indicating that c oupling has n o t 

affected the intended signal. The sense l ine shows a maximum response 

that is just a little over four percent of the undistorted pulse, which 

indicates that there is a negligibl e amount of crosstalk between the 

lines. The previous results for t h e duroid substrate, shown in Fig. 

4.12, indicated that coupling was by far the d ominan t mec hanism, 

producing a very l arge spurio us response and seriously degrad ing the 

signal line pu l se. 

Thus through the use of the zero coupling p oints, even/odd mode 

coupling was essentially eliminated as a distortion mec hanism on 

microstrip lines even though they were in close p roximity . Using the 

correct combination of the two substrate materials enabled the des ign 

of a structure that exhibited better isolatio n betwee n the lines than 

could be obtained by using either of the substrate materials alone . In 

spite of the extreme distances t raveled, crosstalk wa s held to 

negligible levels and the intended signal suffered n o not i ceabl e 

distortion due to coupling. 



CHAPTER 5 

CONCLUSIONS 

Solving the microstrip boundary value problem in a rigorous manner 

gave a simplified representation of multilayer coupled line structures 

and enabled the accurate computation of the line parameters as well a s 

pulse propagation for these structures. First, a generalized Green 's 

function was presented as a simple recurrence relation, that is 

applicable f o r microstrip structure with any number of superstrates or 

substrates. Next the Fourier transform and the even/odd mode approach 

were used to obtain the formulas necessary to analyze the transient 

response on coupled transmissi on l ine, including the effects of 

dispersion, losses and coupling. Numerical results were presented for 

both single and mul ti layer structures, showing that a full wave 

analysis in necessary for accurate results. Finally, a new method for 

equa l izing the even and odd mode phase veloc ities through the control 

of the electrical characteristics of the substrates was presented . 

The rigorous solution of the multilayer , multiconductor mi c r ostrip 

boundary value problem with the spectral domain approach resulted i n a 

relatively simple formulation for the microstrip parameters . The 

derivation began by choosing TEY and TMY modes, allowing the problem to 

be solved separately for each mode, since the modes satisfy the 

b o undary conditions independently in the spectral domain. Next, the 

SDA was used to obtain the Green 's function, initially for a simple 
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single layer shielded structure. To illustrate the use of the SDA, a 

six-layer structure was considered and the derivation , resulted in a 

simple recurrence relation for the Green's functi on o f multilayer 

configurations . The recurrence relation allows the Green ' s function to 

be easily computed with a single subroutine for any arb it rary 

multilayer structure, rather than requiring a different subrouti ne f or 

each possible configuration. Finally, the Green's functi on was also 

expressed in a form suitable for the calculation of the parameters of 

slot line and coplanar waveguide type structures. 

The even/odd mode analysis and the frequency domain approach were 

used to derive the formulas for the propagation of fi nite time domain 

signals on coupled transmission lines. Using the fre quency domain 

approach simplified the transient analysis of the coupled line system, 

allowing fast, accurate computation of the output waveforms . The 

even/odd mode approach made it possible to split the symmetric 

four-port system into two simpl er two-port netwo r ks . Combining the 

even/odd mode analysis with the frequency domain appro ach gave simple 

expressions for the time domain response of l ossy and dispersive 

coupled transmission lines. These expressions clearly i l l ustrated how 

losses, coupling, and dispersion degrade the input s i gnal and how 

differences in the complex propagation constants for the eve n and odd 

modes produce a spurious response on the sense line. 

Numerica l results for the frequency dependen t effective diel ectric 

constant and pulse dispersion for a single layer symmetric c oupled 

microstrip were presented, for different substrate materials , center 

conductor spacings , and distances. Coupling between t he lines 
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increased when the center conductor spacing was increased , the distance 

increased, and/or the dielectric constant of the substrate increased . 

Examining the distortion of pulses at different distances showed that 

coupling distortion separates the input signal into even and odd mode 

pulses as the distance gets very large. By studying the effects of 

center conductor spacing, it was demonstrated that the condit i ons f or 

uncoupled operation of transmission lines depended not only on the 

center conductor spacing o r substrate height, but also on the subst ra te 

materials, the distance over which the lines are coupled , as well as 

the other dimensions of the structures . 

The generalized Green's function was used with the SDA t o consider 

the effects of multiple substrates and superstrates on the 

characteristics of coupled lines. Adding even a thin lower substrate 

layer with a different dielectric constant caused significant changes 

in the creff of the isolated case as well as for the even and odd 

modes. Placing a superstrate layer with the same dielectric constant 

as the substrate on top of the center conductor interface also had an 

important effect on the microstrip parameters. By adjusting the height 

of this superstrate layer, it was possible to equalize the even/odd 

phase velocities for the structure, although the equaliza tion was good 

only in the quasi-static region or over a very narrow band of 

frequencies . When a cover sheet was introduced to the two superstrate 

structure, creff changed over a wide range of values as the height of 

the cover layer was varied. Finally, it was shown that the r elat ive 

positions of the substrate layers changes not only the value of creff 

f or the isolated case, but can cause the even and odd mode creff to 



switch in relation to each other. 

A new method of equalizing the even and odd mode phas e veloc i t ies 

was presented that could obtain a match over a very wi de band of 

frequencies. To overcome the difficulties encountered fr om us i ng t he 

superstrate equalization scheme, the modal phase velocit ies were 

equalized by choosing substrates with the appropriate d i mens ions a nd 

materials. Since for all frequencies most of the fields lie in t he 

substrate layers, this matching procedure gives good res ults not only 

in the quasi-static region, but also for frequencies well a b ov e it . 
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The appropriate substrate heights for even/odd mode e qua l ization, 

called zero coupling points , were presented as functi on s of frequency 

and center conductor spacing for different substrate materials. Us ing 

these zero coupling points, a structure was designed tha t exhibite d 

better isolation between the adjacent lines than could be obtai ned by 

using either of the substrate materials alone . When pulse distortion 

was considered for this structure, it was shown that t he c r o ss t alk wa s 

almost non-existent and the input signal had suffe red n o d i stort ion due 

to coupling. 



CHAPTER 6 

RECOMMENDATIONS 

Future research in this area would be concerned with increasing 

the speed and accuracy of the computations and considering b oth losses 

and discontinuities in a rigorous manner. To increase the accuracy o f 

the Spectral Domain Approach, more current expansion functions should 

be used. It is very important to choose 'good' expans ion fun c tions 

since a poor choice will necessitate a very large mat r i x which may n ot 

even converge. Since the SDA is used in a very genera l manner, it is 

p ossible to include the effects of l ossy dielectrics by using a complex 

dielectric constant. This substitution would make the Green's function 

complex, resulting in two equations (the real and imagi nary parts ) to 

be solved for two unknowns, a and ~ . The results from this research z z 

could be used to verify approximate formulas used for dielec t ric l osses 

and t o specify the range of validity of the approximatio ns . 

It was shown in Chapter 3 that differences in the e ven and odd 

mode attenuation constants cause coupling and distortio n on coupled 

lines . Currently there are no approximate formulas o r result s from 

rigorous solutions available for the modal attenuatio n con s tants . The 

attenuation constants for the even and odd modes could be de termined by 

using the SDA for dielectric losses and by modifying approx imate 

f ormulations for the c onduc t o r losses. Once the modal attenuation 

c onstants have been determined as a functio n of freque ncy , pulse 
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distortion on coupled lines due to attenuation distortion and 

attenuation coupling could be investigated . 

To accurately model complete MMIC circuits, the effects o f 

discontinuities must be considered in a rigorous manner. The SDA can 

be used to consider these problems since the derivati on transformed in 

both the z and x directions. By using the appropriate current 

expansion functions, which now must be functions of ~ as well as ~ , 
Z X 

it will be possible to characterize discontinuities in the z direction 

of the structure. Discontinuities that might be considered include : 

abrupt changes in the center conductor width , gaps in the center 

conductor , bends, crossing lines , etc. These resu l ts could then be 

applied to consider the transient response of very complex circuits. 
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GREEN'S FUNCTION FOR GENERALIZED PLANAR STRUCTURE 

Efficient solution of printed circuit transmission lines with the 

Spectral Domain Approach (SDA) requires a closed form expression for 

• NTE NTM 
the modal input ~mpedances, z and Z . The solution begins by 

solving the boundary value problem for a six layer structure , f i rst for 

the TMY mode and then for the TEY mode. This derivation shows a 

pattern that leads to the recurrence relation presented in section 

2.3.8. 

Since TEY and TMY modes are being used, the boundary conditions 

can be enforced separately for each mode. In order to simplify the 

no tation, a different geometry is used for the derivation, shown in 

figure A.l. The structure is surrounded perfect electric conductors on 

all four sides, i.e. at x = a, x = -a , y = h , y = h +h +h +h +h +h . 
1 123456 

Non-shielded structures can be considered by l etting a ~ oo, h ~ oo, 
1 

and/or h -7 oo as i s appropriate for the structure. For clarity, only 
6 

one center conductor is shown, but any finite numbe r could be 

considered. Beginning with the TMY mode first, the appropriate vector 

potentials, Ayi (~x,y'~z), for each of the six regions are chosen a s 

follows: 

REGION 1: (0 :S y :S h) 
1 

A =B (~ ,~ )cos h(a y) 
y l 1 X Z yl 

REGION 2: (\ :S y :S d
2

, d
2 

= \ +h
2

) 

A =B (~ , ~ )cosh[a (d -y))+B (ff ,ff ) sinh[a (d -y)J 
y 2 2A X Z y 2 2 213 X Z y 2 2 

(A.la) 

(A.l b ) 
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REGION 3: (d ~ y ~ d , d = h +h +h ) 
2 3 3 1 2 3 

A =B (~ ,~ )cosh[a (d -y)]+B (~ ,~ )sinh[a (d -y)] 
y 3 3A X Z y 3 3 38 X Z y3 3 

(A .1c) 

REGION 4: (d ~ y ~ d , d = h +h +h +h ) 
3 4 4 1234 

A =B (~ ,~ )cosh[a (y-d )]+B (~ ,~ )sinh[a (y-d ) ] 
y4 4A X Z y4 3 48 X Z y4 3 

(A . 1d) 

REGION 5: (d ~ y ~ d , d = h +h +h +h +h ) 
4 55 12345 

A =B (~ , ~ )cosh[a (y-d )]+B (~ ,~ )sinh[a (y-d )] 
y 5 SA X Z y5 4 58 X Z y5 4 

(A . 1e) 

REGION 6: (d ~ y ~ d , d = h +h +h +h +h +h ) 
5 6 6 123 4 56 

A =B (~ ,~ )cosh[a (d -y)] 
y 6 6 X Z y6 6 

(A . 1f) 

Where the B (~ ,~ )'s are u nknown functions of the transform 
N X Z 

variables, which are to be determined from the boundary conditions . 

They are abbreviated as B throughout. A and A are chosen based on; 
N yl y6 

1) the tangential ~ fields vanishing at y = 0 (at ground plane) and 2) 

the tangential ~ f i e lds vanishing at y = d (at the cover sheet). If 
6 

the structure doesn ' t have a cover sheet , i.e. it is an open structure, 

then d --7 oo because h --7 oo and the fields at infinity must also 
6 6 

vanish due to the outward radiation condition . Because the TMY mode 

allows either the x or z directed fields to be used to enforce the 

boundary conditions, only the x directed electric and magnetic fields 

will be given . The six vector potentials in equations (A.1a-f) are 

used with equations ( 2 . 12a -f) to calculate the fields in each region . 

REGION 1: 

E™ - B 
~xay1 

sinh(a y) (A . 2a) 
X1 1 WIJ.l c1 yl 

TM 
j 

~z 
(A. 2b) H B - cosh(a y) 

x l 1 j.J.1 yl 

(32 ~2 + ~2 2 2 
(A . 3) - a w IJ. 1 cl 1 X z yl 
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REGI ON 2: 

REGION 3: 

REGION 4: 

REGION 5: 

REGION 6 : 

E™ 
x6 

H 
T M 

x6 

{3xexy2 [ ] -- B sinh [ex (d -y) 1 +B cos h [ex (d -y) 1 
W/1

2 
C 

2 
2 A y 2 2 2 B y 2 2 

j {3z [s cosh [ex (d -y)1+B sinh[ex (d -y)1] 
11

2 
2A y 2 2 2B y2 2 

2 
- ex 

y 2 

{3xexy3 [ ] -- B sinh [ex (d -y) 1 +B cosh [ex (d -y) 1 
W/1

3 
C 

3 
3 A y 3 3 3 B y 3 3 

j {3z [s cosh[ex (d -y)1+B sinh[ex (d -y)1] 
11

3 
3l\ y 3 3 3B y 3 3 

{3xexy4[ ] -- B sinh [ex (y-d ) 1 +B cosh [ex (y- d ) 1 
W/.l C 4 A y 4 3 4 B y 4 3 

4 4 

{3zexy4[ ] - -- B sinh [ex (y-d ) 1 +B cosh [ex (y-d ) 1 
W/.l 

4 
C 

4 
4 A y 4 3 4 B y 4 3 

j {3z [s cosh[ex (y-d )1+8 sinh[ex (y-d )1] 
/.l 4A y4 3 4B y 4 3 

4 

2 
- ex 

y4 

{3xexys [ ] -- B sinh [ex (y-d ) 1 +B cosh [ex (y-d ) 1 
W/.l

5
C

5 
SA y5 4 SB yS 4 

j {3z [s cosh[ex (y-d )1+8 sinh[ex (y-d >1] 
/.l SA y 5 4 SB yS 4 

5 

Q 2 2 
+ '"' - ex z y s 

B 
{3xexy6 
-- sinh [ex (d -y) 1 

6 W/.l C y 6 6 6 6 

j 
{3z 

B -- cosh[ex (d -y)1 
6 11 6 y6 6 
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(A. 4a) 

(A . 4b) 

(A. 5) 

(A. 6a) 

(A. 6b) 

(A. 7) 

(A . 8a) 

(A . 8b) 

(A. 8c) 

(A . 9) 

(A. l Oa ) 

(A.1 0b) 

(A .ll) 

(A.12a) 

(A.1 2b) 



~2 = ~2 + ~2 - ~2 
6 X Z y6 

(A.l3) 

Since the SDA requires both the x and z directed electric fields 

at the center conductor interface, both E™ and E™ are included. Note 
x4 z4 

h . TM d TM ' t at us1ng E an E could have bee n used instead of the electr1c 
x3 z3 

fields in region 4 because the center conductors are assumed to be 

infinitely thin. 

Now that the fields have been determined, the ten independent 

boundary conditions (two have already been applied) can be used to 

eliminate the B 's . First the tangential fields are matched at the 
N 

first dielectric interface from the bottom. 

11 c ~ [ ] r1 r 1 2 , 
B =-sech (~ h ) Y B s1nh(~ h )+B cosh(~ h ) 

1 y1 1 11 c ~ 21\ y2. 2 28 y2 2 
r 2 r2 y 1 

H - H T M I TM I 
z1 y =h

1 
z2 y=h

1 

j~z[B cosh(~ h )+B sinh(~ h )] 
11 21\ y 2 2 28 y2 2 

2 

Substituting in forB using (A.15) 
1 

c coth (~ h ) ~ [ ] 
rl yl 1 Y2 B sinh(~ h ) +B cosh(~ h ) 

~ c 21\ y 2 2 28 y 2 2 
y1 r2 

- B cosh(~ h ) - B sinh(~ h ) 
21\ y2 2 20 y 2 2 

c coth (~ h ) [ rl y1 1 
8 

~ 2A 
y 1 

c 
r 2 

~ 
y 2 

c coth(~ h)] + 
8 

r2 y2 2 
28 ~ 

y2 

c c coth (~ h ) 
r 2 r 2 y 2 2 

B 
~ 2 11 ~ 

y 2 y 2 

2 
- B (c /~ ) 

20 r2 y2 

(A . l4) 

(A.15) 

(A . 16) 

(A.l7) 

(A.l8) 

17 2 



B 
2 A 

c [c coth(a. h) c coth(a. h)] r 2 r 1 y 1 1 r 2 y 2 2 --- + ; 
a. a. a. 

y 2 y1 y 2 

{[
c coth(a. h)] [c coth(a. h)] [c ]2

} r1 y 1 1 r2 y 2 2 r 2 
-B + ---

2 8 a. a. a. 
y1 y 2 y 2 

(A. l9) 

In a similar manner, the tangential fields a t the fi rst d i e lectric 

interface from the t op are now matched. 

~xa.ys [ ] - ----- B sinh(a. h )+B cosh(a. h ) 
WIJ. C 5 A y 5 5 5 B y 5 5 

5 5 

SJ.CO'.[ ] r6 r6 5 . 
B =-sech(a. h ) Y B s~nh(a. h )+B cosh(a. h ) 

6 y 6 6 1J. C a. SA y 5 5 SB y 5 5 

Substituting in 

r 5 r5 y6 

™I H™l Hz s y=d
5 

= z6 y=d
5 

j~z [B cosh(a. h ) +B sinh(a. h )] 
IJ. SA y s 5 SB y 5 5 

5 

for B using (A.21) 
6 

c coth(a. h) a. 
r 6 Y6 6 y s [s sinh(a. h ) +B cosh(a. h ) ] 

a. C S A y 5 5 SB y 5 5 
y6 r s 

- B cosh(a. h ) - B sinh(a. h ) 
SA y5 5 SB y5 5 

c c c o th (a. h ) ] 
r s + 

8 
r s y s s = 

a. SB a. 
y s y s 

c coth(a. h) [ r 6 y6 6 
8 a. SA 

y6 

c 
r 5 

a. 
y s 

B 
SA 

c coth (a. h ) 
r s y s s 

a. 
y s 

2 
- B (C / a. ) 

59 rs y s 

8 
r5 r6 y6 6 + r5 ys 5 c [c coth(a. h) c coth(a. h)] 

SA a. a. a. 
y s y6 y s 

-B r 6 y 6 6 r s y s s + ~ {[
c coth(a. h )][c coth(a. h) ] [c ]2

} 

59 a. a. a. 
y 6 y s y s 

(A. 2 0) 

(A. 21) 

(A. 22) 

(A. 23) 

(A. 24) 

(A. 25) 
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To simplify t he notation, l et 

c coth (<X h ) 
y™ rl y l 1 

(A. 26a) 
Sl (X 

yl 
c coth (a h ) 

y™ r 2 y 2 2 
(A . 26b) 

52 (X 
y2 

c coth(<X h) 
y™ r3 y3 3 

(A. 26c) 
53 (X 

yJ 
c coth(a h) 

y ™ r4 y4 4 
(A. 26d) 

54 (X 
y4 

c coth (a h ) 
y ™ rs ys s 

(A. 26e) 
ss (X 

ys 
c coth( a h) 

y™ r6 y6 6 
(A. 26f) 

56 (X 
y6 

and 

y™ TM 2 
Y + (c Ia ) 

y™ S l s2 r2 y2 
(A. 27a) 

2 y™ y™ + 
Sl s2 

y™ TM 2 
Y + (c /a ) 

y ™ 56 ss r5 y s 
(A . 27b) 

5 y™ + y™ 
56 ss 

Using these express i ons in equations (A.l9) and (A.25) and solving them 

for B and B respectively , 
2A SA 

B 
2A 

B 
S A 

- B 
2B 

- B 
5B 

(X 
y2 

c 
r2 

(X 
y 5 

c 
r 5 

y™ 
sl 

y™ 
s6 

TM 2 
Y + (c /a ) 

s2 r2 y2 

y ™ +Y™ 
Sl 5 2 
TM 2 

Y + (c /a ) 
ss rs ys 

y™ + y TM 

56 ss 

(X 
y2 y™ - B 

2B c 2 
r 2 

(X 
ys y™ - B 

5B c 5 
r s 

Proceeding to the next dielectric interface up from the 1-2 

(A. 28a) 

(A . 28b) 

interface, the fi e lds at the 2-3 interface a r e forced to be continuous. 

5) E™ l = X2 y =d
2 

E or E = E ™I TM I ™I X3 y=d
2 

Z3 y =d
2 

Z3 y=d
2 

(3xay2 (3xay3 [ ] = ----- B sinh (a h )+B cosh(a h ) 
Wj..L C 3 A y 3 3 3 B y 3 3 

3 3 

(A . 29) 
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B 

a 
y 2 

2B C 
r 2 

ay3
11

r 2 [ ] B s inh(a h )+B cos h(a h ) 
C 11 311 y 3 3 3B y 3 3 

r 3 r 3 

11r2 [ ] B = - B cosh (a h ) +B sinh (a h ) 
211 11 311 y 3 3 3B y 3 3 

r3 

Substituting in f o r B using (A.28a) 
211 

ay2 TM 
11

r 2 [ . ] - B Y = - B cosh (a h ) +B s1-nh ( a h ) 
2B cr

2 
2 11r

3 
311 y3 3 3B y 3 3 

B 

a 
y 2 

2B C 
r 2 

11 [ ] [ ] - 1 r 2 , TM 
- --- B cosh(a h )+B s1-nh(a h ) Y 

11 311 y 3 3 3B y 3 3 2 
r3 

Equating (A.34) and (A.30) 

ay3
11

r 2 [ ] B sinh(a h )+B cosh(a h ) 
C 11 311 y 3 3 3B y 3 3 

r 3 r 3 

-
11

r
2 [s cosh (a h ) +B sinh (a h ) ] [y™] -

1 

11 311 y3 3 3B y3 3 2 
r 3 

Multiplying both sides by [Y™ c 11 ) /[a 11 sinh (a h) ) 
2 r3 r 3 y3 r 2 y3 3 

[ B +B coth(a h )] [y ™ ] 
311 3B y 3 3 2 [ 

cr3coth (ay3h 3) cr3] 
- B +B -

311 a 3B a 
y 3 y 3 

B [Y™+ 
c coth (a h ) ] 

- B [Y™coth (a h ) +c /a ] 
3B 2 y 3 3 r3 y3 311 2 

r3 y3 3 = 
a 

y 3 

Us ing (A.26c) and fac toring c /a out 
r 3 y 3 

o f the l e ft hand side, 

B 
311 

- B 

TM TM 2 
a Y Y + (c / a ) 

y 3 2 s3 r 3 y3 
3B C 

r 3 y™ + y™ 
2 53 

Si nce this expression is very similar t o (A.27a), let 

y™ 
3 

TM TM 2 
Y Y + (c /a ) 

2 s3 r3 y 3 

y™ + y™ 
2 S3 
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(A . 33) 

(A .34 ) 

(A. 35) 

(A. 36) 

(A. 37) 

(A. 38) 

(A. 39) 



Then (A.38) simplifies to; 

B 
3A 

a 
- B y 3™ y 3 

38 c 
r 3 

(A. 40) 

Again in a v e ry similar manner, the tangential fields at t he 4-5 

dielectric interface are equate d. 

B 
a 

y s 
5 8 c 

r 5 

11
r s [ ] B =- B c osh(a h )+B s i nh(a h ) 

SA 1J. 4 A y 4 4 4B y4 4 
r4 

Substituting in f o r B us ing (A . 28b) 
SA 

ays TM 
11

r s [ . ] - B Y = - B c osh (a h ) +B s~nh (a h ) 
sa crs s p.r

4 
4A y4 4 4B y4 4 

B 

a 
y s 

SB C 
r s 

ll [ ] [ ] - 1 r s , TM 
- - B c osh (a h ) +B s~nh (a h ) Y 

IJ. 4A y 4 4 4B y 4 4 5 
r4 

Equating (A.4 2 ) and (A . 4 6 ) 

ay 4
11

r s [ ] B sinh(a h )+B c osh(a h ) 
C IJ. 4A y 4 4 4B y 4 4 

r4 r4 

-
11

r
5

[B c osh(a h )+B sinh(a h )] [y™ ] -
1 

IJ. 4A y4 4 48 y4 4 5 
r4 

Multiplying b o th sides by [Y ™ c p. ] / [a p. sinh(a h)] 
s r4 r4 y4 r s y4 4 

[ B +B coth(a h)][YTM] 4A 48 y 4 4 5 

B y™+ r 4 y4 4 
[ 

c c oth(a h)] 

4A s a 
y 4 

[ 

cr 4coth (ay 4\l cr4] 
- B +B -

4A a 4B a 
y4 y4 

- B [Y™coth(a h )+c / a ] 
4B 5 y 4 4 r4 y4 

(A . 41) 

(A . 4 2 ) 

(A. 43) 

(A . 44) 

(A . 4 5) 

(A. 4 6 ) 

(A. 4 7) 

(A. 4 8 ) 

(A. 4 9 ) 
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Using {A.26d) and factoring c /a out 
r4 y4 

B 
4A 

- B 

TM TM 2 a Y Y + {c Ia ) 
yq 5 s4 r4 y4 

4B C 
r 4 y™ + y™ 

5 S4 

of the l eft hand side, 

Again this expression is very similar to {A.27a), so let 

y™ 
4 

TM TM 2 
Y Y + {c /a ) 

5 s4 r4 y4 

y ™ + y™ 
5 S4 

Then {A.50) simplifies to; 

B 
4A 

a 
- B y™ y4 

4B 4 C 
r4 

{A. 50) 

{A . 51) 

{A . 52) 

Finally, the fields at the center conductor interface are matched. 

Initially, the electric fields at the interface are simply set equal to 

each other. The condition that the fields are zero over each of the 

center conductors is applied implicitly through the current or electric 

field expansion functi ons when Galerkins method is used in the final 

step. 

B 
JB 

a c 11 
8 

y4 rJ r J 
4B a c 11 

yJ r4 r4 

Using this relation in {A.40) 

B 
JA 

B 
4B 

{A . 53) 

{A. 54) 

{A. 55) 

Finally, the discontinuity of the magnetic fields due to the 

current densities on the center conductor interface is used. 
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{A. 56) 

Using {A. 52) and (A . 55) 

a a j.J.4 
y™ y4 y™ y4 

-j 
TM 

(A. 5 7) B +B 
(3z 

J 
4B 3 c 4B 4 c z 

r4 r 4 

B -j J™ 
ll4 cr4 1 

{A. 58) 
4B z (3zay4 y™+y™ 

3 4 

To verify that the TMY mode satisfies the boundary conditions in 

the spectral domain, it is neccesary to show that using the z directed 

magnetic fi e lds at the interface gives the same result as using the x 

directed fields. 

(3x 
+ j B cosh (0) 

j.J.
4 

4A 

Using {A.52) and {A . 55) 

B 
4B 

B 
4B 

y™ 
3 

a 
y4 +B 

C 4B 
r 4 

y™ 
4 

a 
y4 

c 
r 4 

TM 
-J 

X 

Equation (A.61) is equivalent t o (A .58) if 

or 

a TM a TM 
,..J = ,..J 

Z X X Z 

whi c h was shown t o be true for the TMY case in Secti on 2 .3.2. 

{A . 59) 

(A. 60) 

(A. 61) 

(A . 62) 

{A . 63) 

Thus the 

TMY mode does satisfy the boundary conditions in the spect ral domain 
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and can be used independently to solve the boundary value problem. To 

complete the TMY solution, substitute (A.58) into {A.52) 

B 
4A 

{A. 64) 

Using {A.58) and {A.64) for B and B , substituting back into 
4B 4A 

the equations for the electric field in region 4, equations {A . 8a-b) , 

and setting y = d
3

, the fields at the center conductor interface are; 

J™ (3x 
E™ z z™ 

X4 jwc (3z 0 

{A. 65b) 

J™ 

E 
T M 

Z4 

z 
jwc z™ {A. 65a) 

0 

where 

z™ = [Y™+y™]-1 
4 3 

{A . 66) 

y™ and y™ can be thought of as the modal admittances seen by the 
3 4 

current densities looking outward in each direction from the center 

conductor interface. Thus z™ is the parallel combination of these 

admittances. 

Having completed the solution f or the TMY mode, the TEY modal 

configuration is considered. The vector potentials for this mode, 

F. {{3 ,y,{3 ), are chosen as follows for each of the six regions: 
Yl X z 

REGION 1: 0 ~ y ~ h 
1 

F =A ({3 ,(3 )sinh{a y) 
y1 1 X Z y1 

REGION 2: h ~ y ~ d , d = h +h 
1 2 2 1 2 

F =A ({3 ,{3 )cosh[a {d -y)]+A {{3 ,(3 )sinh [a {d -y)] 
y l 2A X Z y2 2 2B X Z y 2 2 

REGION 3: d ~ y ~ d , d = h +h +h 
2 3 3 1 2 3 

F =A {{3 ,(3 )cosh[a (d -y)]+A {{3 ,(3 )sinh[a {d -y ) ] 
y1 3A X Z y 3 3 3 B X Z y 3 3 

{A. 67a) 

{A. 67b) 

(A. 67c) 
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REGION 4: d s y s d, d = h +h +h +h 
3 4 4 1 2 34 

F =A (~ ,~ )cosh[a (y-d ))+A (~ ,~ )sinh[a (y-d )) 
y1 4A X Z y4 3 4 B X Z y 4 3 

(A. 67d) 

REGION 5: d s y s d , d = h +h +h +h +h 
4 55 1 23 45 

F =A (~ ,~ )cosh[a (y-d ))+A (~ ,~ )sinh[a (y-d )) 
y1 SA X Z y 5 4 5 B X Z y 5 4 (A . 67e) 

REGION 6: d S y S d , d = h +h +h +h +h +h 
5 6 6 1 2 3 4 56 

F =A(~,~ )sinh[a (d -y)) 
y1 6 X Z y6 6 

(A. 67f) 

Where the A (~ ,~ )'s are unknown functions of the transfor m 
N X Z 

variables , which are to be de te r mined from the boundary conditions. 

They are abbreviated as A throughout. F 's are chosen based on 1) 
N y N 

the tangential ~ fields vanishing at y 0 and 2) the tangential ~ 

fields vanishing at y = d
6

. Again, only the x directed fi e lds are used 

because of the independence of the TEY mode. The fields in each region 

are determined using the six vec tor potentials (A.67a-f) along with 

equations (2 . 38a-f). 

REGION 1: 

ET E 
Xl 

HTE 
Xl 

~2 = 
1 

REGION 2: 

~2 
2 

-j 
~z 

A - sinh(a y) 
1 c

1 
y1 

~a 
- A 

X y1 
--- cosh(a y) 

1 Wj..l.
1

c
1 

yl 

2 2 2 a ~ 2 
X 

+ ~ -z y l w 111 cl 

~ 
-j ~[A cosh[a (d -y)1+A sinh[a (d -y)1] 

c
2 

2A y 2 2 2B y 2 2 

~xay2 [ ] - - A sinh [a (d -y) 1 +A cosh [a (d -y) 1 
Wj..l. C 2 A y 2 2 2 B y 2 2 

2 2 

~ 2 + ~2 
X Z 

2 
- a y 2 

(A. 68a) 

(A. 68b) 

(A. 6 9) 

(A. 70a) 

(A. 70b) 

(A. 71) 
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REGION 3: 

-j ~z [A cosh[a (d -y))+A sinh[a (d -y)) ] 
C 3A y3 3 38 y3 3 

3 

H TE ~xay3 [A sinh [a (d -y) J +A cosh [a (d -y) 1] 
x3 w~3 c3 3A y3 3 3B y 3 3 

~2 = ~2 + ~2 _ a2 2 
3 x z y3 w ~3c3 

REGION 4: 

-j ~z [A cosh[a (y-d ))+A sinh[a (y-d ) ]] 
C 4A y4 3 48 y4 3 

4 

j ~x [A cosh[a (y-d )]+A sinh[a (y-d ))] 
c

4 
4A y4 3 4B y4 3 

~xay4 
[A s inh [a (y-d ) J +A cosh [a (y-d ) 1] 

W~ 
4 

C 
4 

4 A y 4 3 4 B y 4 3 

~2 = ~2 + ~2 _ a2 
4 X Z y4 

REGI ON 5: 

REGION 6: 

ETE 
x6 

HT E 
X6 

-j {3z [A cosh[a (y-d ) )+A sinh[a (y-d ) 1] 
c SA y s 4 ss y s 4 

5 

{3xays[ ] - -- A sinh [IX (y-d ) ) +A cosh [IX (y-d ) J 
W~ C 5 A y 5 4 5 B y 5 4 

-j 

A 
6 

A 

5 5 

6 

2 
- IX 

y s 

~z 
-- sinh [a (d -y)) 
c y6 6 

6 

~x1Xy6 
cosh [IX (d -y) J 

w~6c 6 y6 6 

~2 = {3 2 + {32 2 2 - IX w ~6£6 6 X z y6 

(A.72a) 

(A. 72b) 

(A. 73 ) 

(A.74a) 

(A. 74b) 

(A. 74c) 

(A. 75) 

(A. 76a) 

(A. 76b) 

(A. 77) 

(A. 78a) 

(A. 78b) 

(A. 79) 

Now the boundary conditions are applied to eliminate the unknown 

constants, beginning with the continuity of the tangential fields at 

the first dielectric interface above the ground plane. 
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1) E:~ ly=h1 = E:~ ly=h1 o r E:~ ly=h1 = E:~ ly=h1 
- jA ~zsinh(a h) = -j ~z[A cosh(a h )+A sinh(a h >] 

1 c
1 

y 1 1 c
2 

2A y 2 2 2B y 2 2 

A = s ech(a h )cr
1

[A cosh(a h )+A sinh(a h >] 
1 y1 1 C 2A y 2 2 2B y 2 2 

r2 

or H = H TE I TE I 
Zl y =h

1 
Z2 y =h

1 

+A c osh(a h >] 2B y 2 2 

Substituting in for A using (2.3-81) 
1 

- Y1 y l 1 A c osh(a h ) +A sinh(a h ) 
a c o th (a h ) [ ] 

#1r1 2A y 2 2 2B y 2 2 

aY
2

[A s inh(a h ) -A cosh(a h >] 
#1r2 2A y 2 2 2B y2 2 

y1 yl 1 A y 2 y 2 2 +A y2 = a c oth (a h ) [ a c oth (a h ) a ] 

" 2A " 2R ll ,..r1 ,..r2 ,..r2 

a a c oth (a h ) 
- A (a I ll ) 2 - y 2 A y 2 y 2 2 

2A y 2 r 2 11r2 2B 11r2 

a [a coth(a h) a c o th(a h)] A y 2 y 1 y 1 1 + y2 y 2 2 = 

28 11

r

2 11

r{l[a coth(a h )ll]r[

2

a c oth(a h)] [a ]
2
} -A y 1 y 1 1 y 2 y 2 2 + y 2 

2A llr l 11r2 11r 2 

No w t he c ontinuity o f the tangential fi e lds a t the fi rs t 

dielectric interface b e l ow the cove r shee t is enfo r c ed . 

- j A 
6 

= E or TE l 
x 6 y =d

5 
E - E TE l TEl 

z s y =d
5 

z6 y =d
5 

~z 
- sinh(a h) = 
c y 6 6 

6 

-j ~z[A c osh(a h ) +A s inh(a h >] 
c

5 
SA y S 5 SB y S 5 

1 82 
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(A. 81) 

(A. 82) 

(A. 8 3 ) 

(A . 84 ) 

(A . 8 5) 

(A . 86 ) 



183 

A = sech(a h ) cr
6

[A cosh(a h )+A sinh(a h )] 
6 y6 6 crs SA ys s 58 y s s 

(A. 87) 

H - H TE I TE I 
zs y=ct

5 
z6 y=d

5 

~xays[ ] -----A sinh(a h ) +A cosh(a h ) 
Wjl

5 
C S 5 A y 5 5 5 B y 5 5 

(A. 88) 

Substituting in for A using (A.87) 
6 

a coth (a h ) [ 
- Y6 Y6 6 

A cosh(a h )+A sinh(a h )] 
l.lr

6 
SA yS 5 58 y S 5 

ays[A sinh(a h ) - A cosh(a h )] 
llrs SA y s s 58 ys s 

(A. 89) 

y6 y6 6 A ys ys s +A ys = a coth (a h ) [ a coth (a h ) a l 
II SA II SB II ,...r6 ,...rs ,...rs 

a a coth(a: h) 
_ A (a: I ll ) 2 _ ys A y s y s s 

SA yS r S jl 58 ll 
rs rS 

(A . 90) 

a: [a: coth (a: h ) a: coth (a h ) l A ~ y6 y6 6 + ys yS 5 = 
58 

llrs ll{r[

6

a: coth (a: h ) ]ll[r: coth (a h ) l [a ]
2
} _ A y6 y6 6 ys ys s + ys 

SA llr 6 llr s llrs 
(A. 91) 

Just as in the TMY case, the notation is simpl ified by letting 

a: coth (a: h ) 
YTE yl yl 1 

(A . 92a) 
S l llrl 

a: coth (a: h ) 
TE y2 y2 2 

(A. 92b) y 
52 llr 2 

a coth(a h) 
Y TE y3 y3 3 

(A.92c) 
53 llr3 

a: coth (a: h ) 
YTE y4 y4 4 

(A. 92d) 
54 llr 4 

a: coth (a: h ) 
YT E ys y s s (A. 92e) 

ss llrs 

a: coth (a: h ) 
YTE y6 y 6 6 (A. 92f) 

S6 llr 6 



and 

TE 2 
Y +(a / p. ) 

s2 y2 r 2 

YT E + YTE 
Sl S2 
TE 2 

Y +(a I ll ) 
ss ys r s 

(A . 93a) 

(A. 93b) 

Using these expressions in equations (A.85) and (A.91) and solving them 

for A and A r espectively; 
2A SA 

A 
2B 

A 
SA 

- A 

- A 

2A 

SB 

YTE 
p.r2 Sl 
a 

y 2 

YTE 
P.rs S6 
a 
ys 

TE 2 
Y +(a /p. ) 

S2 y 2 r2 

YTE + YTE 
Sl S2 
TE 2 

Y +(a / p. ) 
ss ys rs 

YTE + YT E 
S6 ss 

p.r2 YTE A 
2A a 2 

y2 
(A. 94a) 

p.rs YTE A 
SB a s 

ys 
(A. 94b) 

The next b o undary of concern is the 2-3 dielectric interface, and 

so the tangential fields are forced to be continuous . 

A 

a 
y2 

2B II ,...r2 

a c [ 3 r 2 . 
Y A s1nh(a h )+A cosh(a h )] 

iJ. C 3A y 3 3 3B y3 3 
r 3 r3 

Substituting in for A using (A .94a) 
2B 

TE 
- A y 

2A 2 
ay3cr2 [A sinh(a h )+A cosh(a h )] 
P.r3cr3 3A y3 3 3B y3 3 

A 
2A 

a c [ ] [ ] -1 3 r 2 . T E - Y A s1nh(a h )+A cosh(a h ) Y 
iJ. C 3A y3 3 3B y3 3 2 

r 3 r3 

(A. 95) 

(A. 96) 

(A. 97) 

(A. 98) 

(A . 99) 

(A.lO O) 
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Equating (A.96) and (A.l00) 

cr
2

[A cosh(~ h )+A sinh(~ h >] 
C 3A y 3 3 3B y3 3 

r 3 

~ c [ ] [ ] -1 3 r2 , TE 
- y A Slnh(~ h )+A cosh(~ h ) Y 

ll C 3A y3 3 38 y 3 3 2 
r 3 r 3 

Multiplying both sides by [YTEc ) / [c sinh(~ h)) 
2 r3 r 2 y3 3 

[A coth(~ h )+A ] [YTE] =- ~y)[A +A coth(~ h )] 
3A y 3 3 38 2 llr) 3A 3B y3 3 

~y3coth(~y3h3 )] =- A [YTEcoth(~ h )+~ I ll ] 
llr

3 
3A 2 y 3 3 y3 r 3 

Using (A.92c) and factoring ll /~ out 
r 3 y3 

of the left hand side, 

A 
38 

- A 

TE TE 2 
ll y y + (~ / II ) 

r 3 2 s3 y 3 ,...r3 
3A ~ 

y3 y
2
TE + YTE 

S3 

Since the above equation is very similar to (A.93a). let 

TE TE 2 
Y Y + <~ I ll > 2 s 3 y 3 r 3 

YTE + YTE 
2 S3 

The n (A.l04) simplifies to; 

A 
38 

- A 
3A 

y 
TE llr3 
3 ~ 

y 3 

(A.lOl) 

(A. 102) 

(A .l 03) 

(A.104) 

(A . l05) 

{A .1 06) 

As before, the tangential fields at the 4-5 dielectric interface 

are now equated. 

{A.l07) 

(A.l08) 

H or H = H TE l TE l TE l 
x4 y=d

4 
z S y=d

4 
z4 y=d

4 

13x~y4 [ ] =-----A sinh(~ h )+A cosh{~ h ) 
Wj..L C 4 A y 4 4 4 B y 4 4 

4 4 

{A.109) 
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Substituting in for A using (A . 94b) 
SB 

TE - A y 
SA S 

ay4crs [A sinh(a h )+A cosh (a h )] 
ll C 4A y4 4 4B y4 4 

A 
SA 

r4 r4 

a c [ J [ J -1 4 rs . TE - Y A s~nh(a h )+A cosh(a h ) Y 
ll C 4A y4 4 4B y4 4 4 

r4 r4 

Equating (A.108) and (A .112) 

c [ ] r s . 
--- A cosh(a h )+A s~nh(a h ) 
C 4A y4 4 4B y 4 4 

r4 

a c [ J [ J -1 4 r s . TE - Y A s~nh(a h ) +A cosh(a h ) Y 
ll C 4 A y4 4 4B y 4 4 S 

r4 r4 

Multiplying both sides by [YTEc ) /[c sinh(a h) ] 
s r4 r s y4 4 

[A coth(a h )+A ] [Y TE] =- ay
4

[A +A coth(a h)] 
4A y 4 4 4B S ll 4A 4B y 4 4 

r4 

a coth(a h)] [ ] 
Y4 Y4 4 = -A YTEcoth(a h )+a I ll 

ll 4A s y 4 4 y 4 r4 
r4 

Using (A . 92d) and factoring ll /a out 
r 4 y4 

of the left hand side, 

A 
4B 

- A 

TE TE 2 
ll Y Y +(a I ll ) r4 s 54 y4 r 4 

4A a 
y4 

Again this expression is very simi l ar to (A . 93a) 

TE TE 2 
Y Y +(a Ill ) 

5 s4 y4 r 4 

YTE + YT E 
s 54 

Then (A .11 6) is 

A 
4B 

- A 
4A 

TE llr4 
y 

4 a 
y4 

(A . llO) 

(A . lll) 

(A.112) 

(A.113) 

(A . 114) 

(A.115) 

(A . l16) 

(A .11 7 ) 

(A . 11 8) 

Having completed all the other boundary conditions, the fields at 

the center conductor interface are ma t c hed . As with the TMY mode , the 

electric fields at the interface are intitially set e qu a l to each 

other . The c ondition that t he elect ic fi e lds are zero over a finite 
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distance in the spatial domain is applied implicitly through the 

current or electric field expansion fuct i ons used in Galerkin' s method . 

A 
3A 

A 
c 

r 3 

4A C 
r 4 

Us i ng thi s relation in (A .l06 ) 

A 
3B 

- A 
4A 

YTE 11r 3cr3 

3 a c 
y 3 r 4 

(A.l19) 

(A . 120) 

(A. 121) 

Finally, the d iscontinuity o f the magnetic fields due to the 

current dens ities on the center conducto r interface is used. 

10) 

Using (A.l18) and (A . 121) 

- A YTE - A 

A 
4A 

4A 3 4A 

1 w11o c 4 
------- JTE 
YTE+YTE ~ z 

3 4 

(A.122) 

(A .1 23) 

(A.124) 

As with the TMY case, it i s neccesary to veri fy that the TEY field 

configuration satisfies the boundary conditions independently in the 

spectral domain. For thi s t o be t ru e , using the z directed magnetic 

fields at t he center conductor inte rface should yield the same answer 

as us ing the x d irected fie l ds . 
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A 
3B 

TE 
-J 

X 

Using (A.l18) and (A.l21) 

- A YTE - A 

A 
4A 

4A 3 4A 

Equation (A.l27) is equivalent to (A.l24) if 

or 

(3 J TE = _ (3 J TE 
X X Z Z 

which was shown to be true for the TEY case in section 2 . 3 . 3. 

(A.l25) 

(A.126) 

(A.127) 

(A.128) 

(A .129) 

Thus, 

both the TEY and TMY modes satisfy the boundary conditio n s in the 

spectral domain independently. To complete the solution, substitute 

(A . l24) into (A.118}. 

A 
4B 

(A.130) 

Using (A . 124) and (A.130} f o r A and A , and substituting back 
4B 4A 

into the equations for the elect ric field in region 4, equations 

(A.74a-b}, and setting y = d, the fields at the center conductor 
3 

interface are; 

ETE , TE ZTE (3z 
(A.131a) )Wll J 

(3x X4 0 z 

ETE , TE TE 
(A.131b) - JWll J z 

Z4 0 z 
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where 

ZTE = [<E+Y~Erl (A . l32) 

Again, YTE and YTE can be thought of as the a dmittanc e s seen by 
4 3 

the current densities looking o utware in each direction from the c e nter 

c onductor interface and ZTE a s the parallel combination o f these 

admittances . 

Looking over the derivation, it is evident that the r e is a p a tte rn 

to the determination o f the constants. Observ i ng t he equ a tions 

def i ning the y™ 
i 

(A . 27a-b), 
TE 

(A . 39), and (A . Sl), a ndY . ; 
1 

(A. 93a-b) , 

(A.l05), and (A.ll7), it is evident that there is a pattern that can be 

used to generali ze the derivation to an arbitrary number o f l ayers . 

Us ing this pattern, with the geometry in Fig. 2.2 , t he modal impe dance s 

can be found using the equations in Section 2. 3.8 . 
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